Что варят вольфрамовыми электродами. Разновидности неплавящихся вольфрамовых электродов

Аргонодуговая сварка отличается по технологии от остальных видов соединения металлов. Весь процесс происходит в защитной атмосфере, а плавление металла заготовок обеспечивают вольфрамовые электроды.

В этом материале мы разберем, какими характеристиками должны обладать такие расходники и их разновидности. А также что нужно знать при использовании таких электродов.

Вольфрамовые электроды относятся к категории неплавящихся и используются для . Во время сварочного процесса они не расплавляются. Их главная задача - обеспечить работу дуги, с помощью которой и соединяется металл заготовок.

В отличие от покрытых аналогов, вольфрамовые стержни не имеют обмазки, а дополнительный присадочный материал во время сварки подают отдельно в виде прутка. Защита от окисления сварочной ванны обеспечивается за счет подачи газа (аргона, гелия или углекислоты).

Длиной вольфрамовые электроды чаще всего встречаются в 175 миллиметров, но есть стержни и покороче: 50. 75, 150 мм. Диаметр также различный: от 1 мм до 8.

По своему составу такие расходные материалы бывают различными: из чистого вольфрама или с добавками в виде лантана, иттрия, тория, циркония и других элементов.

Легирующие элементы в виде оксидов редкоземельных металлов, которые вносят в состав при изготовлении, добавляют стойкости к плавлению вольфрама и улучшает его качество.

Чтобы можно было отличать различные электроды, принята цветовая и буквенная маркировка разновидностей вольфрамовых стержней.

Маркировки электродов

Зная основные обозначения, которыми маркируют вольфрамовые электроды можно «прочесть» их описание, состав и сферы использования. Существуют следующие типы этих сварочных расходных материалов, которые отличают по цвету. Буквенные обозначения указывают на химический состав и наличие примесей. Характеристики вольфрамовых электродов по маркам следующие:

  • «WP»зеленый цвет. Это обозначение стержней, основным составом которых является практически чистый металл. Процентное соотношение добавок составляет всего около 0,5%. Назначение таких электродов - сваривание алюминиевых деталей, а также сплавов этого металла и магния.

На переменном токе с использованием инверторного оборудования электроды из чистого вольфрама обеспечивают стабильную работу дуги. Кончик стержня выполнен в виде шарика, это делается для снижения термических нагрузок на сам расходник.

  • «WZ8», цвет белый. Маркировка обозначающая, что в составе электрода есть окиси металла циркония. Такие электроды имеют свойство выдерживать намного большие токовые нагрузки, в отличие от остальных. Используют их для сварки различных цветных металлов: бронзы, магния, алюминия, никеля и их сплавов. Сваривание металлов лучше всего проводить на переменном токе. Заточка окончания стержня также выполнена в виде шарика.
  • «WT20», цвет красный. Такие вольфрамовые электроды наиболее распространенные, хотя имеют вредную добавку для здоровья - торий. Это радиоактивный металл и в больших объемах сварочных работ на производстве лучше не использовать расходники с таким составом. При небольшом количестве использование электродов практически безвредно.

Зато свойства, какими обладают ториевые стержни, намного превосходят многие другие аналоги. Их можно использовать для сварки различных видов стали, в том числе и нержавеющей. А также таких довольно тугоплавких металлов, как титан и молибден. Возможно сваривание и медных, никелевых или бронзовых деталей.

Сваривание такими электродами проводят на постоянном токе.

  • «WY20», цвет темно-синий. Добавка в виде окиси иттрия позволяет получить стабильное и устойчивое горение электрической дуги на постоянных токах при прямой полярности. Эти электроды применяют для сваривания стали как углеродистой, так и нержавеющей, а также медных и титановых заготовок.
  • «WC20», цвет серый. Такие электроды практически универсальные, так как ими можно работать при переменном или постоянном токе. Примесь редкоземельного церия позволяет получить стабильное горение дуги даже при малой мощности оборудования.

Цериевые стержни используют для сварки стали и тонкостенных конструкций из нее, а также орбитальном сваривании труб.

Все дело в движении потока электронов и от формы окончания стержня будет зависеть распределение энергии и давление дуги на поверхность. Это влияет на ширину и глубину проварки металла, а также форму и размеры сварного шва. Поэтому и требуется заточка вольфрамовых электродов до нужной геометрии.

Существуют некоторые правила затачивания стержня для тех или иных условий работы аргонодуговой сваркой, а также в зависимости от марки самого расходника.

Форма заточки в зависимости от марки электрода определяется следующим образом.

  • Марки «WP» и«WL» должны иметь кончик в виде шарика (сферы).
  • Электроды марок «WT» скругляют, но без большого радиуса, скорее формируется легкая выпуклость.
  • Вольфрамовые стержни с маркировкой «WC»,«WY», «WT», и «WZ» затачивают под конус, но в зависимости от применения форма может быть отличимой.

Определить длину, на которую следует затачивать вольфрамовый стержень, очень просто. Для этого нужно диаметр электрода умножить на постоянное значение в 2,5. Например, если используется расходник с диаметром в 2 мм, то заточку проводят на длину в 5 миллиметров.

Затачивать кончик стержня можно с использованием точильного круга или болгарки. Удобно проводить этот процесс, зажав вольфрам в патроне электрической дрели, вращая его при низких оборотах. Это позволит равномерно стачивать металл и получить нужную форму.

Однако, кроме геометрии конца электрода, важен и угол, на который он будет заточен. Такой параметр будет зависеть от силы тока, на котором будет проходить сваривание заготовок.

  • При сварочных работах на невысоком токе электрод затачивают до значения 10-20 градусов.
  • Для сварки металлов на средних токах - 20-30 градусов.
  • На большой мощности угол заточки составляет 60-120 градусов.

Угол заточки будет влиять на стабильность и устойчивость горения дуги аргоновой сварки, а также на ресурс работы самого электрода. При показателе менее 20 градусов, вольфрамовый стержень будет изнашиваться быстрее. Если же угол заточки более 90, то в таком случае дуга может быть неустойчивой. Правильно затачивать электрод нужно независимо от вида материала, с которым придется работать.

Допущенные ошибки при заточке стержня приведут к различным последствиям.

  • Если допустить неправильную ширину при затачивании, это гарантированно приводит к непроваренному шву. Крепление будет некачественным.
  • Нарушение симметрии (неравномерная форма заточки) отклоняет сварочную дугу от нужного направления.
  • Острые или слишком тупые углы провоцируют износ расходника или уменьшают глубину провара.
  • Глубокие борозды и царапины поперек заточенного кончика приводят к нестабильному горению дуги (так называемое «блуждание»).

При возникновении таких явлений нужно прекратить работу и исправить заточку вольфрама.

А что Вы можете добавить к этому материалу? Поделитесь своим опытом в выборе, применении и затачивании вольфрамовых электродов в комментариях к статье.


К атегория:

Сварка металлов

Сварка вольфрамовым электродом

Сварка вольфрамовым электродом является весьма важным видом дуговой сварки, широко применяемым в производстве изделий новой техники из спецсталей, алюминия, магния и различных легких сплавов, тугоплавких металлов и активных металлов с большим сродством к кислороду, металлов малых толщин (менее 1 мм) и т. д. Вольфрам, самый тугоплавкий металл, в настоящее время производится в больших количествах для широкого промышленного применения.

Вольфрам используется в больших количествах как легирующая присадка в высококачественных сталях, как основа многих твердых сплавов, для изготовления нити электрических ламп накаливания и пр. Для дуговой сварки выпускаются вольфрамо-вые стержни диаметром 1-6 мм.

Вольфрам производится методами порошковой металлургии; из РУДЫ получают окисел вольфрама, он восстанавливается в печах в струе водорода; полученный тонкий порошок прессуют, затем длительной проковкой в атмосфере водорода превращают в сплошной металл за счет сварки частиц порошка в одпо целое. Нагретый вольфрам энергично соединяется с кислородом и быстро сгорает. Поэтому вольфрамовый электрод нельзя применять для сварки на воздухе; он применим только в защитных газах, не содержащих кислорода и непрерывно вдуваемых в дугу, - это инертные газы аргон или гелий, или же водород, иногда смеси этих газов. Дуга постоянного тока в аргоне при прямой полярности (минус на вольфрамовом электроде) легко зажигается, горит спокойно и устойчиво; напряжение дуги ниже, чем в воздухе; при этом электрод нагревается мало. Обычное напряжение дуги (10-15 в) поднимается до 25-30 в лишь при больших токах.

На прямой полярности электрод нагревается мало и допустимы высокие плотности тока. Наименьший сварочный ток на нормальной полярности может, быть снижен до 1 а при еще достаточно устойчивом горении дуги. При нормальных режимах сварки на прямой полярности расход вольфрама незначителен и составляет в среднем всего несколько граммов за час работы.

Ввиду разницы в свойствах и размерах вольфрамового стержня и свариваемого изделия дуга отличается ярко выраженной асимметрией; ее вид и свойства резко меняются при обратной полярности (плюс на вольфрамовом электроде). Возрастает напряжение дуги, уменьшается ее устойчивость, значительно усиливается нагрев и увеличивается расход вольфрамового электрода, уменьшается глубина проплавления основного металла. Дуга оказывает особое весьма важное технологически очищающее действие, которое состоит в том, что с поверхности основного металла в зоне сварки удаляются окислы и загрязнения. Это позволяет сваривать без применения флюсов алюминий, магний и их сплавы, что является большим техническим преимуществом для самолетостроения и других отраслей промышленности, где применяется сварка легких металлов. Сущность очищающего действия дуги, по-видимому, заключается в том, что при обратной полярности вольфрамовый электрод бомбардируется электронами, а основной металл - тяжелыми положительными ионами аргона. Бомбардировка ионами производит механическое действие, подобное опескоструи-ванию, разрушает и сбивает пленку окислов и очищает поверхность металла. Этот процесс часто называется катодным распылением. Трудность поддержания дуги обратной полярности и сильный разогрев вольфрамового электрода иногда делают целесообразным применение переменного тока для питания дуги при сварке алюминиевых и магниевых сплавов.

Вследствие асимметрии электродов дуга обладает сильным выпрямляющим действием. Электропроводность дуги выше в полупериоде, когда на вольфрамовом электроде минус, и значительно меньше, когда на электроде плюс (рис. 1). При питании дуги переменным током до известной степени совмещаются преимущества дуги постоянного тока прямой и обратной полярности, нагревание вольфрамового электрода не слишком сильно и расходуется он медленно, а основной металл хорошо проплавляется; в то же время очищающее действие дуги вполне достаточно для сварки алюминиевых и магниевых сплавов без флюсов.

Для металлов, окисляющихся не очень сильно, таких, как углеродистые и легированные стали, включая нержавеющие, твердые сплавы, медь и медные сплавы, никель и никелевые сплавы, титан, молибден и т. п., целесообразна сварка дугой постоянного тока прямой полярности.

Для питания дуги вполне пригодны обычные агрегаты постоянного тока и выпрямители для дуговой сварки. В некоторых случаях желательны дополнительно осцилляторы, облегчающие зажигание и устойчивое горение дуги. Для алюминия, магния и их сплавов и некоторых других интенсивно окисляющихся сплавов целесообразно применение переменного тока от специальных трансформаторов с повышенным сварочным напряжением и обязательным применением осцилляторов. Вольфрамовые электроды применяются обычно диаметром 1-4 мм.

Существенное значение для сварки имеет держатель электрода или горелка (рис. 2). Горелка служит для удержания электрода, подведения сварочного тока, иногда и охлаждающей воды. Размеры горелок и конструкция определяются в первую очередь силой сварочного тока. На прямой полярности и токах не свыше 200 а горелка не требует водяного охлаждения. Токи более 500-600 а обычно не применяются ввиду усиливающегося разбрызгивания металла и выдувания дугой металла из сварочной ванны.

Рис. 1. Асимметрия дуги переменного тока в аргоне

Особенно выгодна и производительна сварка вольфрамовым электродом без присадочного металла, когда шов образуется за счет сплавления кромок основного металла или присадочный материал заранее закладывают в разделку шва. Сварка вольфрамовым электродом удобна для автоматизации. Если требуется присадочный металл, то автоматы и полуавтоматы снабжают механизмом для подачи присадочной проволоки. Присадочная проволока по размерам и скорости подачи сходна с плавящейся электродной проволокой.

Сварка вольфрамовым электродом применима для очень широкого диапазона толщин металла (0,1-60 мм), сварку металла больших толщин выполняют в несколько слоев током 1-600 а.

Рис. 2. Держатель электродов (горелка) для аргоно-дуговеп сварки: 1 - газоподводящий ниппель; 2 - подвод тока; 3 - регулировочный газовый вентиль; 4 - насадка для газа; 5 - мундштук; 6 - цанга для электрода; 7 - вольфрамовый электрод

Расход аргона 0,5-1,5 м3/ч. Скорость сварки меньше, чем при плавящемся электроде, но во многих случаях вполне удовлетворительна.

Поверхность сварных швов получается гладкой, металлически чистой; разогреваемый объем основного металла и его деформации минимальны. Практически составы присадочного и наплавленного металла одинаковы; сохраняется без изменения содержание даже наиболее легко окисляющихся элементов. Потери присадочного металла на угар и разбрызгивание обычно не превышают 2-3%- При сварке низкоуглеродистой стали, в особенности плохо раскисленной, необходимо применять легированную проволоку, например Св-ЮГС , для подавления кипения расплавленного металла и устранения пор в наплавке.

Сварка в аргоне вольфрамовым электродом в основном применяется для металлов небольших толщин до 5-6 мм. Металлы больших толщин также можно сваривать, но с увеличением толщины быстро снижается производительность сварки и более удобными и рентабельными часто становятся другие методы, в первую очередь сварка плавящимся электродом в инертных газах.

Способ сварки в аргоне вольфрамовым электродом применим во всех пространственных положениях, дает наплавленный металл высокого качества. Существенным преимуществом является видимость места сварки. Сварка вольфрамовым электродом может производиться не только в чистом аргоне, но и в смеси аргона с различными газами (до 5% кислорода или до 20% водорода); для некоторых металлов очень хорошие результаты дает сварка в чистом водороде, в особенности для металлов малых толщин.

При сварке неплавким электродом полезно используется главным образом тепло, освобождающееся на поверхности основного металла. Тепло же, освобождающееся в катодном пятне на вольфрамовом электроде, расходуется в значительной степени на бесполезный нагрев этого электрода и излучение; полный тепловой к. п. д. сварочной дуги с неплавящимся электродом значительно ниже, чем с плавящимся, и составляет в среднем 50-60% (против 80-85%).


Вольфрамовый электрод нашел применение в среде защитных газов (гелий, аргон). Реже используется при плазменной резке и наплавке.

Вольфрамовые электроды для аргонодуговой сварки обладают высокой тугоплавкостью (3000 градусов). Изготовляются методом порошковой прессовки. Кроме вольфрама (температура кипения 5800 градусов) в составе в зависимости от марки изделия, присутствуют оксиды:

  • церия;
  • тория;
  • иттрия;
  • лантана;
  • циркония.

Для удобства сварщиков на неплавящиеся электроды наносится цветная маркировка.

1) WP (зеленый наконечник) — содержание вольфрама 99,5%, для сварочных работ с магнием (сплавами), алюминием. Большое содержание вольфрама повышает устойчивость дуги на переменном токе в среде гелия и аргона. Рабочую зону электрода делают в виде нароста-шарика.

2) WT-20 (красный код) — добавлен диоксид тория (2%).

Соединение на постоянном токе: меди, титана и нержавеющих, низколегированных, углеродистых сталей. Марка востребованная, но торий — радиоактивный материал, при заточке торированных электродов образуется пыль вредящая здоровью человека. Рабочая зона сварщика нуждается в хорошей вентиляции. WT-20 сохраняют форму электрода при любой силе тока, а угол заточки изменяется под сварочные нужды.

3) WС-20 (серый наконечник) — добавлен диоксид церия (2%).

Марка применяется для сварки сталей и сплавов на постоянном и переменном токе. Деоксид церия (нерадиоактивный элемент) улучшает запуск дуги и повышает допустимые значения тока. WС-20 используется для сварки тонколистовой стали, трубопроводов и орбитальных труб. Недостаток цериевых изделий в концентрации оксида в рабочей зоне электрода.

4) WY-20 (тёмно-синий наконечник) с добавкой диоксида иттрия (2%).

Варят на постоянном токе медь, титан (сплавы) и стали — нержавеющие, углеродистые, низколегированные. Иттрированная добавка улучшает устойчивость дуги во всех токовых режимах.

5) WZ-8 (белая маркировка) — оксид циркония (0.8%).

Для сварки на переменном токе алюминия, магния и сплавов. Рабочая зона электродов с цирконием в форме сферы, превосходит по токовой нагрузке другие изделия.

6) Вольфрамовые электроды для аргонодуговой сварки с включениями окиси лантана:

WL-15 (цвет золотистый), 1.5% оксида лантана;
WL-20 (код синий), 2% лантана;
WR-2 (бирюзовый наконечник) — оксид лантана (1.4%).

Изделия с оксидом лантана имеют легкий запуск и устойчивую дугу, прожоги металла минимальные, уменьшенный износ рабочей зоны электрода. Применяются для всех видов сталей и сплавов.

Размеры и цены на электроды:

  • длина — 175 мм;
  • диаметр от 1 до 5 мм.

Самые популярные диаметры — 1,6-2,5 мм.

Цена на вольфрамовые изделия зависит от производителя, марки и диаметра электрода.

Стоимость WL-15 из Китая (1.0 мм, универсальный) — 40 рублей. Германское изделие TBi D (3.0 мм, красный для нержавеющей стали) обойдется в 340 рублей. За китайский WT-20 (5.0 мм, красный для нержавеющей стали) придется выложить 900 рублей.

Как правильно затачивать вольфрамовые изделия

Перед работой электроды для аргонной сварки затачиваются. Для получения правильной длины заточки, аргонщики советуют простую формулу: диаметр электрода умножить на 2,5.

Например, диаметр 3,2 мм умножаем на 2,5 и получаем длину заточки 8 мм (рисунок выше).

При на переменном токе, шарик на вольфрамовом изделии образуется САМ. Специально притуплять электрод, делая полусферой — не обязательно.

Электрод стачивается вдоль, как карандаш. Если затачивать поперек, то риски от абразива создадут препятствия для стабильной дуги.

Точить можно наждаком или болгаркой, вращая изделие в руках. Для равномерной заточки, можно стержень закрепить в патроне шуруповерта или электродрели, выставив малые обороты вращения.

По технике безопасности, одевайте маску для защиты органов дыхания от пыли.

Автоматизация процесса заточки

Продаются специальные машинки для заточки вольфрамовых электродов для аргоновой сварки. В комплектацию входит — ударопрочный чемодан для хранения прибора, электромашинка, приспособление для фиксации электрода в держателе.

Устройство машинки включает:

  • абразивный алмазный диск с односторонним покрытием;
  • регулировка количества оборотов;
  • фильтр для мелкодисперсной вольфрамовой пыли;
  • регулировка угла заточки от 15 до 180 градусов.

Желающие приобретают это устройство для домашних нужд.

P.S. В процессе практики, вы отдадите предпочтение полюбившимся электродным маркам, которые будете использовать чаще всего.

В последнее время сварочные работы получили достаточно большое распространение, что связано с высоким качеством получаемого шва и многими другими моментами. Проводить сварку можно с использованием специального оборудования, а также расходного материала – электродов. Вольфрамовые электроды для аргонодуговой сварки на сегодняшний день весьма распространены. Они представляют собой неплавящийся подводник, который предназначен для работы в защитной среде. В качестве защитной среды могут применяться газ аргона или гелия.

При применении специального электрода для рельефной сварки стоит учитывать, что он предназначен для образования дуги и ее удерживания, не выступает в качестве припоя. Для использования вольфрамовых электродов требуются специальные сварочные аппараты. Классификацияимеет огромное количество особенностей, к примеру, применяются различные цвета для обозначения химического состава.

Маркировка вольфрамовых электродов

Вольфрам идеально подходит в качестве тугоплавкого материала, который предназначен для стабилизации образующейся дуги. К особенностям этого расходного материала отнесем следующие моменты:

  1. Выдерживает длительную работу под высоким напряжением.
  2. Применяемый материал при изготовлении способен выдерживать длительное воздействие высокой температуры.
  3. Плавится вольфрам намного медленнее, чем другие материалы, применяемые при изготовлении электродов.

Вольфрамовые электроды для аргонодуговой сварки классифицируются по цветам и многим другим признакам. Деление на классы позволяет существенно упростить выбор. При выборе учитываются многие особенности процесса сварки металлов. Маркировка электродов проводится для обозначения размера прутка и химического состава, а также других значимых характеристик.

Уделяя внимание обозначению маркировки вольфрамовых электродов ТИГ и других вариантов, исполнения следует отметить нижеприведенные моменты:

  1. Первый символ в маркировке, который указывает на применение вольфрама в качестве основного материала при изготовлении электродов, всегда «W».
  2. Следующий символ предназначается для обозначения металлов. Как правило, концентрация примесей указывается в процентном соотношении. К примеру, число 20 говорит о концентрации примеси 2%.
  3. Следующее число указывает на длину прутка. Наиболее распространенным вариантом исполнения можно назвать вольфрамовый электрод с длиной 175 мм. На рынке можно встретить и другие варианты исполнения рассматриваемого изделия.

Стоит учитывать, что пруток из чистого вольфрама на сегодняшний день применяется крайне редко, так как с ним могут работать исключительно сварочные аппараты TIG (даже при их использовании может возникнуть много трудностей). Примеси применяются для изменения следующих показателей:

  1. проводимости;
  2. плавкости;
  3. дугообразования;
  4. прочности.

Международные стандарты, применяемые при обозначении, определяют следующие моменты:

  1. WP – обозначение, которое используется для электродов с чистым вольфрамом. На примеси уходит менее 0,5%. Как ранее было отмечено, подобные варианты исполнения довольно трудно применять при сварке.
  2. С – символ, применяемый для обозначения примеси Церия. Стоит учитывать, что для данного варианта исполнения применяется также серый цвет обозначения. Подходит вольфрамовый электрод с подобной примесью для многих аппаратов
  3. Т – применяется для обозначения диоксида тория. Для маркировки подобного стержня принято использовать красный цвет. Область применения весьма обширна, как правило, проводится плавка цветных металлов, к примеру, нержавеющей стали. При выборе этого варианта исполнения следует помнить о его существенном недостатке – применяемая лигатура зачастую радиоактивная. Именно поэтому при изготовлении применяется столь яркий цвет. Во время проведения работы нужно соблюдать технику безопасности. Достоинством этого типа прудков можно назвать высокую прочность.
  4. Z–обозначение оксида циркония. Для обозначения данной примеси применятся белый цвет. Чаще всего подобный вариант исполнения вольфрамового электрода используется при работе с медью или алюминием. За счет определенной концентрации оксида циркония повышается стабильность образующейся дуги.
  5. Y – диоксид иттрия. Для обозначения этого легирующего элемента применяется темно-синий оттенок. Область применения – производственные цехи, в которых получают конструкцию, рассчитанную на выдерживание высокой нагрузки. Подходит для сваривания меди, титана и некоторых сталей.
  6. L – обозначение оксида лантана. Стоит учитывать, что данный вариант исполнения может маркироваться самым различным образом. Изделие считается универсальным предложением, которое подходит для работы с постоянным и переменным током. Основными эксплуатационными качествами можно считать высокую прочность и устойчивость к воздействию критических температур.

Цветная маркировка вольфрамовых электродов применяется для того, чтобы упростить процесс подбора расходного материала к определенным условиям работы.

Особенности сварки вольфрамовым электродом

Правильно выбрав электроды для сварки, можно лишь обеспечить условия для проведения качественной работы. Каждый сварщик должен знать все особенности сварки в аргоновой среде, когда применяются неплавящиеся электроды из вольфрама. Среди особенностей отметим следующие моменты:

  1. При соединении нержавеющей стали или других материалов наконечник выступает в качестве проводника тока. Плавящиеся электродымогут иметь разную форму наконечника, так как этот параметр не отражается на особенностях проводимой работы.
  2. За счет правильной заточки формируется стабильная дуга. Если допустить ошибку при заточке, образующаяся дуга будет нестабильной, что не позволит получить качественный шов.
  3. При применении вольфрамовых электродов учитывается их химический состав и многие другие моменты.

В некоторых случаях без подобных электродов просто не обойтись, но при обычной сварке их применять не рекомендуется.

Заточка вольфрамовых электродов

Заточка вольфрамовых электродов должна проводиться для того, чтобы можно было получить ровный шов при минимальных трудовых затратах. Заточка вольфрамовых сварочных электродов для аргонной сварки может проводиться для получения следующей формы:

  1. сферы;
  2. конуса.

Кроме этого, при проведении рассматриваемого процесса уделяется внимание:

  1. углу заточки;
  2. длине участка, с которого снимается материал при заточке.

Длина определяется при помощи специальной формулы, а вот выдержать требуемый угол заточки довольно сложно.

Особенности заточки вольфрамовых стержней также заключаются в нижеприведенных моментах:

  1. С увеличением угла существенно повышается качество получаемого изделия, но возникают трудности при сваривании элементов, изготовляемых из толстого металла.
  2. При выдерживании 60-ти градусов формирующаяся дуга становится более стабильной, перестает скакать, за счет чего процесс сварки существенно упрощается.

Приведенная ваше информация определяет то, что угол заточки выбирается в зависимости от особенностей конкретного случая. Если предъявляются высокие требования к получаемому шву, то заточка проводится под острым углом, если важна производительность, его можно снизить.

Образование требующейся формы наконечника может проводится вручную или при использовании специальных инструментов. Для срезания материала может использоваться болгарка или наждачный круг. Кроме этого, в продаже встречается и специальное оборудование, предназначенное для проведения рассматриваемой работы.

При выполнении заточки вручную могут допускаться следующие ошибки:

  1. Создается слишком острый угол. За счет допущения подобной ошибки материал начинает слишком быстро плавиться, работа существенно усложняется. Слишком острый угол создается лишь в том случае, когда нужно получить высококачественный шов. Перед тем как проводить сварку при большом угле заточки следует немного потренироваться, так как задача существенно усложняется.
  2. Следует выдерживать ширину. Слишком большой или малый показатель становится причиной, по которой нельзя выдержать требуемые параметры проплавления шва.
  3. Довольно часто встречается ситуация, при которой заточка проводится несимметрично. Это приводит к тому, что контролировать передвижение дуги становится очень сложно. Именно поэтому при проведении работы не стоит спешить, лучше всего проверять симметричность периодически, так как на определенном этапе исправить дефект уже будет невозможно.
  4. При критическом снижении угла заточки снижается степень проплавки получаемого шва.
  5. При применении болгарки есть вероятность того, что на поверхности появятся небольшие канавки. Этот дефект становится причиной блуждания дуги. Именно поэтому при проведении работы следует быть осторожным, не следует делать резких движений.

Если аргонодуговая сварка проводится часто, то следует применить специальный затачивающий станок. Кроме этого, некоторые фирмы предоставляют соответствующие услуги. Процесс заточки должен проводиться также с учетом того, какой материал будет обрабатываться.

В заключение отметим, что стоимость вольфрамовых электродов весьма велика. Это связано со сложностью производства, количеством и типом используемых материалов при изготовлении. Выпускают подобные изделия самые различные производители, большей популярностью пользуется продукция зарубежных производителей, но можно приобрести и варианты исполнения, предлагаемые отечественными производителями.

Аргонная сварка – это современная сварка с применением неплавящегося электрода из вольфрама, в среде инертного газа. Такая сварка ограждает металл от взаимодействия с кислородной средой, вызывающей его окисление и азотирование. В виде защиты чаще всего при работе применяется инертный газ аргон, но возможно использование азота, гелия и различных газовых смесей. В TIG сварке, Ar (аргон) имеет повсеместное применение, а вот He (гелий) используют в редких случаях, для решения определённых производственных задач.

Постоянное применение в данной сварке имеют газовые составляющие. И действительно, аргон не образует с атмосферой взрывоопасной смеси. Он немного тяжелее чем воздух и более практичен при сварке, чем гелий. Но сама дуга при применении гелия имеет в 1,5–2 раза больше энергии, чем при использовании того же аргона. Повсеместное применение при проведении сварочных работ имеет смесь с такими составляющими: 35–40% чистого аргона плюс 60–65% чистого гелия. Аргон полностью стабилизирует дугу, а гелий качественно сплавляет металл.

У аргонодуговой сварки всего два международных названия. TIG – сварка неплавящимися специальными электродами из вольфрама в среде инертного газа. MIG/MAG – сварка самой электродной проволокой непосредственно в среде инертного аргона или даже
углекислого газа.

Маркировка вольфрамовых электродов

В аргонодуговой сварке используют вольфрамовые электроды. Использование вольфрама в этом случае оправдано, так как он тугоплавкий – способен выдерживать высокие температуры не плавясь.

В настоящий период времени наша промышленность выпускает электроды длиной 175 мм и такими диаметрами: 1 мм; 1,6 мм; 2 мм; 2,4 мм; 3,2 мм; 4 мм. Разница между размерами обусловлена необходимостью работы при определённых диапазонах сварочных токов:

  • 1 мм – до 50 А;
  • 1,6 мм – до 100 А;
  • 2 / 2,4 мм – до 200 А;
  • 3,2 мм – до 300 А;
  • 4 мм – свыше 300 А.

Вольфрамовые электроды для аргонодуговой сварки производятся из чистого вольфрама, а также тарированного и лантанированного, что способствуют повышению качества и стабильности сварочной дуги. Марка электродов квалифицируется от процентного содержания примесей и добавок. В настоящее время существует всего три категории вольфрамовых сварочных электродов:

  • постоянного тока (WY, WT);
  • переменного тока (WZ, WP);
  • универсальные (WL, WC).

Расход количества электродов при использовании аргонной сварки зависит от типа самой сварки, диаметра применяемого прутка, вида тока и ещё ряда дополнительных показателей.

Вольфрамовые электроды для аргонодуговой сварки имеют следующую маркировку, обозначенную цветовыми кодами:
WP (зелёный): электроды состоят из чистого вольфрама, используются для сварки таких металлов, как магний, алюминий и их разнообразных сплавов. Ток переменный, на постоянном не применяются, так как заточить их гораздо сложнее, чем другие.
WZ (белый): состав этих электродов включает оксид циркония. Дуга при сварке имеет высокую стабильность. Применяются при сварке бронзы, алюминия, никеля, а так же их сплавов.
WT (красный): в качестве добавки к основным химическим элементам используется оксид тория. Эта марка электродов имеет широкое применение, но необходимо помнить, что торий является низкорадиоактивным металлом. При использовании аргонной сварки необходимо соблюдать дополнительные требования безопасности. Помещение должно быть оснащено системой вентиляции. Данные электроды необходимы при сварке деталей из нержавеющей стали, тантала, молибдена.
WY (тёмно-синий): применяются в особых случаях для сварки ответственных, сложных соединений в конструкциях как из углеродистых сталей, так и из низколегированных. Необходим также при сварке нержавеющих сталей и титана.
WL (золотистый): эти электроды универсального действия. Ими осуществляется сварка самых разных составов сталей и сплавов. Неоходимы для переменного и постоянного тока.
WC (серый): также универсальный электрод для аргонной сварки как на переменном, так и на постоянном видах электрического тока. В качестве добавки служит оксид церия.

Заточка вольфрамовых электродов

Перед сваркой на постоянном токе вольфрамовые электроды необходимо заточить. Угол и направление заточки важно скорректировать так, чтобы кончик электрода стал очень острым. Это необходимо для того, чтобы сварочная дуга была полностью сфокусирована на малом диаметре сварочной ванны.
Сварочная ванна – это объём полностью расплавленного металла, образовавшегося при сварке плавлением при высоких температурах. Образование такой сварочной ванны – главный этап получения неразъёмных соединений при сварке плавлением, так как от формы и размеров ванны зависят геометрические размеры швов. Если электрод не будет заточен, то размер дуги будет слишком большим в диаметре и тепловложение окажется недостаточным.
Для сварки металлов на переменном токе электрод тоже нужно заточить. Но в этом случае кончик электрода должен быть немного притуплен. При сварке на переменном токе вольфрамовый электрод сильнее греется и немного подплавляется, что и требуется для получения более рассеянной дуги. Чтобы электрод держал форму, нужно правильно подбирать диаметр электрода в зависимости от диаметра сварочных швов.

Аргонодуговая сварка неплавящимся электродом (tig)

При сварке неплавящимся электродом обязательно используют . Так как из-за тугоплавкости вольфрама, плавление которого происходит при температуре около 5000 °C, сам электрод практически не сгорает. В связи с этим образование газов, ведущих к ионизации и зажиганию дуги не происходит. Кроме осциллятора, для образования сварочного шва применяют присадочный материал.

Аргонодуговая сварка плавящимся электродом

Электродом в данном случае является стержень из металла. Он покрыт слоем рутила. Сварочная дуга зажигается из-за паров расплавленного металла, которые в аргоне дают ионизацию. Осциллятор в данном случае не применяется.

Цены на электроды этих категорий зависят не только от страны-производителя, но и от ценовой политики предприятий их выпускающих. В настоящее время вольфрамовые электроды имеют такую стоимость:

  • электроды марки WP – от 3657 руб/кг;
  • электроды марки WZ – от 5000 руб/кг;
  • электроды марки WT – от 5000 руб/кг;
  • электроды марки WY – от 5000 руб/кг;
  • электроды марки WL – от 5000 руб/кг;
  • электроды марки WC – от 4730 руб/кг.

Применение вольфрамовых электродов

Аргонную сварку применяют в самых разных отраслях промышленности и сельского хозяйства. Возможность аппаратом TIG ac/dc соединить различные углеродистые, нержавеющие, конструкционные стали, а также современные сплавы металлов, характеризует эту технологию как самую востребованную в производстве на данный момент. Аэрокосмическая отрасль, как правило, является основным пользователем данного типа сварки.

В промышленности tig-сварку используют для соединения деталей различных конфигураций. Аргонную сварку применяют для создания переходов между трубами различного диаметра. Сварочные швы алюминия после tig-сварки не образовывают трещин, имеют химическую целостность металла, что позволяет использовать этот режим сварки для герметизации ёмкостей с ядерными отходами в связи с их утилизацией.

В связи с простой технологией аргонной сварки алюминия, её можно применить в быту, используя домашние инверторы TIG ac/dc. В бытовых условиях возможно организовать даже сварочный процесс нержавейки. Надёжность получаемого шва не вызывает сомнений, так как сварочный шов являет собой единое целое со свариваемым металлом. Современные технологии сварочных работ ставят аргонодуговую сварку с применением вольфрамовых электродов на одно из первых мест в мире по качеству производимых работ.



Понравилась статья? Поделиться с друзьями: