Строение и функции плазматической мембраны. Какое строение имеет плазматическая мембрана? Како­вы ее функции

Плазматическая мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма - все выстроено из клеток.

Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. Рибосомы.
  7. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Общее строение мембраны

Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.

Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:

  • белки;
  • липиды;
  • углеводы.

Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).

Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно "гулять" по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое - 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной - до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки - растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное - фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также "заякоренными" белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур - формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное - один раз;
  • политопное - в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный - над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке - "флип-флоп". Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.

Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные - наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой - специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).

Сфингофосфолипиды и гликолипиды мембраны

Сфингомиелины или сфингофосфолипиды по своей химической природе - производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.

К гликолипидам относится гликокаликс - вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов. Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:

  • маркерную функцию мембраны;
  • рецепторную;
  • процессы пристеночного переваривания частиц внутри клетки.

Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.

Холестерол (стерин мембраны)

Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.

Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.

В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.

Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.

Углеводы мембраны

Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.

Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.

Основные функции плазмалеммы

Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.

  1. Отграничивает содержимое клетки от окружающей среды и защищает его от внешних воздействий. Благодаря наличию мембраны поддерживается на постоянном уровне химический состав цитоплазмы, ее содержимое.
  2. Плазмалемма содержит ряд белков, углеводов и липидов, которые придают и поддерживают определенную форму клетки.
  3. Мембрану имеет каждая клеточная органелла, которая называется мембранной везикулой (пузырьком).
  4. Компонентный состав плазмалеммы позволяет ей исполнять роль "стражника" клетки, осуществляя выборочный транспорт внутрь нее.
  5. Рецепторы, ферменты, биологически активные вещества функционируют в клетке и проникают в нее, сотрудничают с ее поверхностной оболочкой только благодаря белкам и липидам мембраны.
  6. Через плазмалемму осуществляется транспортировка не только соединений различной природы, но и ионов, важных для жизнедеятельности (натрий, калий, кальций и другие).
  7. Мембрана поддерживает осмотическое равновесие вне и внутри клетки.
  8. При помощи плазмалеммы осуществляется перенос ионов и соединений различной природы, электронов, гормонов из цитоплазмы в органеллы.
  9. Через нее же происходит поглощение солнечного света в виде квантов и пробуждение сигналов внутри клетки.
  10. Именно данной структурой осуществляется генерация импульсов действия и покоя.
  11. Механическая защита клетки и ее структур от небольших деформаций и физических воздействий.
  12. Адгезия клеток, то есть сцепление, и удержание их рядом друг с другом также осуществляется благодаря мембране.

Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.

Типы транспорта через клеточный барьер

Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность - закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз - выведение молекул и ионов наружу. Эндоцитоз - захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса - пиноцитоз и фагоцитоз - играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

Плазматическая мембрана , или плазмолемма , среди клеточных мембран занимает особое место. Это поверхностная периферическая структура, ограничивающая клетку снаружи, что определяет ее непосредственную связь с внеклеточной средой, поэтому она является барьером между внутриклеточным содержимым и внешней средой.

Плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ и играет роль первичного клеточного анализатора. В этом отношении её можно считать клеточным органоидом, входящим в вакуолярную систему клетки.

Окружая клетку со всех сторон, плазматическая мембрана исполняет роль механического барьера. Механическая устойчивость плазматической мембраны определяется такими дополнительными образованиями как гликокаликс и кортикальный слой цитоплазмы (рис. 127).

Гликокаликс – это внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов. В состав гликопротеидов входят такие углеводы как манноза, глюкоза, N-ацетилглюкозамин, сиаловая кислота и др.

Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что снижает в слое скорость диффузии различных веществ. В гликокаликсе находятся выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров (внеклеточное пищеварение) до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.

В электронном микроскопе гликокаликс имеет вид рыхлого волокнистого слоя, толщиной 3-4 нм, покрывающего всю поверхность клетки. Гликокаликс обнаружен практически у всех животных клеток, но особенно хорошо он выражен в щеточной каемке всасывающего эпителия кишечника.

Кроме гликокаликса механическую устойчивость плазматической мембране обеспечивают кортикальный слой цитоплазмы и внутриклеточне фибриллярные структуры. Кортикальный (от слова - cortex -кора, кожица) слой цитоплазмы, лежащий в тесном контакте с наружной мембраной, имеет ряд особенностей. В нем в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки и в большом количестве сосредоточены микрофиламенты и микротрубочки. Основным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы.

У простейших, особенно у инфузорий, плазматическая мембрана принимает участие в образовании пелликулы , жесткого слоя, определяющего форму клетки.

Выполнение барьерной роли плазмолеммой заключается также в ограничении свободной диффузии веществ. Она проницаема для воды, газов, малых неполярных молекул жирорастворимых веществ, но совершенно не проницаема для заряженных молекул (ионы) и для крупных незаряженных (сахара) (рис. 130).


Естественные мембраны ограничивают скорость проникновения низкомолекулярных соединений в клетку.

Трансмембранныый перенос ионов и низкомоекулярных соединений. Плазматическая мембрана, как и другие липопротеидные мембраны клетки, является полупроницаемой. Чем больше размер молекул, тем меньше скорость прохождения их через мембрану. В этом отношении она является осмотическим барьером. Максимальной проникающей способностью обладает вода и растворенные в ней газы, медленнее проникают сквозь мембрану ионы (примерно в 10 4 раз медленнее). Если клетку поместить в среду с концентрацией солей ниже, чем в клетке (гипотония), то вода снаружи устремляется внутрь клетки, что приводит к увеличению объема клетки и разрыву плазматической мембраны. И наоборот, при помещении клетки в растворы солей с более высокой концентрацией, чем в клетке, происходит выход воды из клетки во внешнюю среду. Клетка при этом сморщивается и уменьшается в объеме.

Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10 -4 см/с, что в 100 000 раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. Оказывается, для проникновения воды и ионов в клеточной мембране существуют специальные “поры”. Число пор не велико и суммарная их площадь составляет лишь 0,06% всей клеточной поверхности.

Плазматическая мембрана с разной скоростью способна транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Скорость прохождения катионов (K + , Na +) более высока, в сравнении со скоростью прохождения анионов (Cl -).

В транспорт ионов через плазмалемму принимают участие мембранные транспортные белки - пермеазы. Они могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Например, глюкоза входит в клетки симпортно с ионом Na + .

Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, в клетку проникает ион Na + из внешней среды, где его концентрация выше, чем в цитоплазме. При пассивном транспорте мембранные транспортные белки образуют молекулярные комплексы, каналы , через которые растворенные молекулы проходят через мембрану по градиенту концентрации. Часть каналов открыта постоянно, а другая часть закрывается или открывается в ответ на сигнальные молекулы, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки - переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).

В организме животных в цитоплазме клеток концентрация ионов резко отличается от плазмы крови, омывающей клетки. Если суммарные концентрации одновалентных катионов как внутри клеток, так и снаружи практически одинаковы (150 мМ), изотоничны, то в цитоплазме концентрация K + почти в 50 раз выше, а Na + ниже, чем в плазме крови.

Это связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип переноса носит название активного транспорта , и он осуществляется с помощью белковых ионных насосов . В плазматической мембране находится двухсубъединичная молекула (K + + Na +)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na + и закачивает в клетку 2 иона K + против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na + переносится через мембрану из клетки, а K + получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). С помощью мембранных насосов и с затратой АТФ происходит также регуляция в клетке концентрации двухвалентных катионов Mg 2+ и Ca 2+

Работа пермеаз и насосов создает в клетке постоянство концентраций осмотических активных веществ или гомеостаз. Примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.

Совместно с активным транспортом ионов через плазматическую мембрану происходит транспорт различных сахаров, нуклеотидов и аминокислот.

Активный транспорт сахаров и аминокислот в бактериальных клетках связан с градиентом ионов водорода.

Участие специальных мембранных белков в пассивном или активном транспорте низкомолекулярных соединений свидетельствует о выcокой специфичности данных процессов, они меняют при этом свою конформацию и функционируют. Таким образом мембраны выступают как анализаторы, как рецепторы.

Везикулярный перенос: эндоцитоз и экзоцитоз. Любые клеточные мембраны не способны к трансмембранному переносу макромолекул, биополимеров, за исключением мембран, имеющих особые белковые комплексные переносчики - порины (мембраны митохондрий, пластид, пероксисом). В клетку макромолекулы попадают заключенными внутри вакуолей или везикул. Везикулярный перенос разделяют на два вида: экзоцитоз - вынос из клетки макромолекулярных продуктов, и эндоцитоз - поглощение клеткой макромолекул (рис. 133).

При эндоцитозе участок плазмалеммы обволакивает внеклеточный материал и заключает его в мембранную вакуоль, возникшую за счет впячивания плазматической мембраны. В такую первичную вакуоль, или эндосому , могут попадать биополимеры, макромолекулярные комплексы, части клеток или даже целые клетки, в которых они распадаются до мономеров и затем путем трансмембранного переноса попадают в гиалоплазму. Биологическое значение эндоцитоза заключается в получении питательных веществ за счет внутриклеточного переваривания , которое осуществляется на втором этапе эндоцитоза после слияния первичной эндосомы с лизосомой, содержащей набор гидролитических ферментов (см. ниже).

Эндоцитоз формально разделяют на пиноцитоз и фагоцитоз (рис. 134). Фагоцитоз - захват и поглощение клеткой крупных частиц - был впервые описан И,И, Мечниковым. Фагоцитоз встречается как среди одноклеточных (например, амебы, некоторые хищные инфузории), так и у специализированных клеток многоклеточных животных. Сейчас известно, что фагоцитоз и пиноцитоз протекают очень сходно и различия заключаются лишь в массе поглощенных веществ.

В настоящее время эндоцитоз подразделяют на неспецифический или конститутивный, постоянный и специфический, опосредованный рецепторами (рецепторный). Неспецифический эндоцито з (пиноцитоз и фагоцитоз) протекает автоматически и приводит к захвату и поглощению совершенно чуждых или безразличных для клетки веществ, например, частичек сажи или красителей.

Неспецифический эндоцитоз сопровождается первоначальной сорбцией захватывающего материала гликокаликсом плазмолеммы. Жидкофазный пиноцитоз приводит к поглощению вместе с жидкой средой растворимых молекул, которые не связываются с плазмолеммой.

На следующем этапе происходят впячивания плазматической мембраны, инвагинации, появляются на поверхности клетки выросты, складки, которые как бы захлестываются, складываются, отделяя небольшие объемы жидкой среды (рис. 135, 136). Первый тип возникновения пиноцитозного пузырька, пиносомы, характерен для клеток кишечного эпителия, эндотелия, для амеб, второй - для фагоцитов и фибробластов. Эти процессы зависят от поступления энергии.

Вслед перестройкой поверхности следуют слипание и слияние контактирующих мембран, которые приводят к образованию пеноцитозного пузырька (пиносома). Она отрывается от клеточной поверхности и уходит вглубь цитоплазмы.

Неспецифический и рецепторный эндоцитоз, приводящие к отщеплению мембранных пузырьков, происходят в окаймленных ямках, специализированных участках плазматической мембраны. В окаймленных ямках со стороны цитоплазмы плазматическая мембрана покрыта тонким (около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания, ямки (рис. 137). Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина , ассоциированного с рядом дополнительных белков. Три молекулы клатрина вместе с тремя молекулами низкомолекулярного белка образуют структуру трискелиона, напоминающего трехлучевую свастику (рис. 138). Клатриновый трискелионы на внутренней поверхности ямок плазматической мембраны образуют рыхлую сеть, состоящую из пяти- и шестиугольников, в целом напоминающую корзинку. Клатриновый слой одевает весь периметр отделяющихся первичных эндоцитозных вакуолей, окаймленных пузырьков.

Клатрин относится к одному из видов т.н. “одевающих” белков (COP - coated proteins). Эти белки связываются с интегральными белками-рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы, первичного эндосомного пузырька - “окаймленного” пузырька. в отделении первичной эндосомы участвуют также белки - динамины, которые полимеризуются вокруг шейки отделяющегося пузырька (рис. 139).

После того как окаймленный пузырек отделится от плазмолеммы и начнет переноситься вглубь цитоплазмы клатриновый слой распадается. После потери клатринового слоя эндосомы начинают сливаться друг с другом.

Интенсивность жидкофазного неспецифического пиноцитоза может быть очень высокой. Так клетка эпителия тонкого кишечника образует до 1000 пиносом в секунду, а макрофаги образуют около 125 пиносом в минуту. Размер пиносом невелик, их нижний предел составляет 60-130 нм, но обилие их приводит к тому, что при эндоцитозе плазмолемма быстро замещается, как бы расходуется на образование множества мелких вакуолей. Так у макрофагов вся плазматическая мембрана заменяется за 30 минут, у фибробластов - за два часа.

Дальнейшая судьба эндосом может быть различной, часть из них может возвращаться к поверхности клетки и сливаться с ней, но большая часть вступает в процесс внутриклеточного пищеварения.

В ходе фагоцитоза и пиноцитоза клетки теряют большую площадь плазмолеммы (см. макрофаги), которая довольно быстро восстанавливается при рециклизации мембран, за счет возвращения вакуолей и их встраивания в плазмолемму. Это происходит вследствие того, что от эндосом или вакуолей, так же как и от лизосом могут отделяться небольшие пузырьки, которые вновь сливаются с плазмолеммой.

Специфический или опосредуемый рецепторами эндоцитоз отличается от неспецифического тем, что поглощаются молекулы, для которых на плазматической мембране имеются специфические рецепторы, ассоциирующиеся только с данным типом молекул. Такие молекулы, связывающиеся с белками-рецепторами на поверхности клеток, называют лигандами .

Примером избирательного эндоцитоза является транспорт в клетку холестерина. Этот липид синтезируется в печени и в комплексе с другими фосфолипидами и белковой молекулой образует т.н. липопротеид низкой плотности (ЛНП), который секретируется клетками печени и кровеносной системой разносится по всему телу (рис. 140). Специальные рецепторы плазматической мембраны, диффузно расположенные на поверхности различных клеток, узнают белковый компонент ЛНП, и образуют специфический комплекс рецептор-лиганд. Затем комплекс перемещается в зону окаймленных ямок, окружается мембраной и погружается вглубь цитоплазмы. В ней поглощенные частицы ЛНП подвергается распаду в составе вторичной лизосомы .

Эндосомы характеризуются более низким значением рН (рН 4-5), более кислой средой, чем другие клеточные вакуоли. Это связано с наличием в их мембранах белков протонного насоса, закачивающих ионы водорода с одновременной затратой АТФ (Н + -зависимая АТФаза). Кислая среда внутри эндосом играет решающую роль в диссоциации рецепторов и лигандов. Кроме того, кислая среда является оптимальной для активации гидролитических ферментов в составе лизосом, которые активируются при слиянии лизосом с эндосомами и приводят к образованию эндолизосомы , в которой и происходит расщепление поглощенных биополимерв.

В некоторых случаях не всегда судьба диссоциированных лигандов связана с лизосомным гидролизом. Так в некоторых клетках после связывания рецепторов плазмолеммы с определенными белками, покрытые клатрином вакуоли погружаются в цитоплазму и переносятся к другой области клетки, где сливаются снова с плазматической мембраной, а связанные белки диссоциируют от рецепторов. Так осуществляется перенос, трансцитозис, некоторых белков через стенку эндотелиальной клетки из плазмы крови во межклеточную среду (рис. 141). Другой пример трансцитоза - перенос антител. Так у млекопитающих антитела матери, могут передаваться детенышу через молоко. В этом случае комплекс рецептор-антитело остается в эндосоме без изменений.

Фагоцитоз Фагоцитоз является вариантом эндоцитоза и связан с поглощением клеткой крупных агрегатов макромолекул вплоть до живых или мертвых клеток. Так же как и пиноцитоз, фагоцитоз может быть неспецифическим и специфическим, опосредуемым рецепторами на поверхности плазматической мембраны фагоцитирующих клеток. При фагоцитозе происходит образование больших эндоцитозных вакуолей - фагосом , которые сливаясь с лизосомами образуют фаголизосомы .

На поверхности клеток, способных к фагоцитозу (у млекопитающих это нейтрофилы и макрофаги) существует набор рецепторов, взаимодействующих с белками-лигандами. Так при бактериальных инфекциях антитела к белкам бактерий связываются с поверхностью бактериальных клеток, образуют слой, который узнается специфическими рецепторами на поверхности макрофагов и нейтрофилов, и в местах их связывания начинается поглощение бактерии путем обволакивания ее плазматической мембраной клетки (рис. 142).

Экзоцитоз. Плазматическая мембрана принимает участие в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу (см. рис. 133).

В случае экзоцитоза, внутриклеточные вакуоли или пузырьки подходят к плазматической мембране. В местах контактов плазматическая и вакуолярная мембраны сливаются, и пузырек опустошается в окружающую среду.

С экзоцитозом связано выделение синтезированных в клетке разнообразных веществ. Экзоцитоз или секреция в большинстве случаев происходит в ответ на внешний сигнал (нервный импульс, гормоны, медиаторы и др.). В ряде случаев экзоцитоз происходит постоянно (секреция фибронектина и коллагена фибробластами). Сходным образом из цитоплазмы растительных клеток выводятся некоторые полисахариды (гемицеллюлозы), участвующие в образовании клеточных стенок.

Но большинство секретируемых веществ используется другими клетками многоклеточных организмов (секреция молока, пищеварительных соков, гормонов и др.). Часть секретирующих веществ клетки используют для собственных нужд. Например, рост плазматической мембраны осуществляется за счет встраивания участков мембраны в составе экзоцитозных вакуолей, отдельные элементы гликокаликса выделяются клеткой в виде гликопротеидных молекул и т.д.

Выделенные из клеток путем экзоцитоза гидролитические ферменты могут сорбироваться в слое гликокаликса и обеспечивать примембранное внеклеточное расщепление различных биополимеров и органических молекул. Огромное значение примембранное неклеточное пищеварение имеет для животных. Было обнаружено, что в кишечном эпителии млекопитающих в зоне так называемой щеточной каемки всасывающего эпителия, особенно богатой гликокаликсом, обнаруживается огромное количество разнообразных ферментов. Часть этих же ферментов имеет панкреатическое происхождение (амилаза, липазы, различные протеиназы и др.), а часть выделяется собственно клетками эпителия (экзогидролазы, расщепляющие преимущественно олигомеры и димеры с образованием транспортируемых продуктов).

Рецепторная роль плазмалеммы. В качестве рецепторов на поверхности клетки выступают белки мембраны или элементы гликокаликса - гликопротеиды. Чувствительные участки к отдельным веществам могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.

Клетки животных организмов обладают разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.

Многие клеточные рецепторы способны передавать межклеточные сигналы с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Они связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы, после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, - аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Циклического АМФ (цАМФ) является вторичным мессенджером - активатором ферментов - киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глюкагона, вырабатываемого А-клетками островков Лангерганса стимулируется активация аденилатциклазы. Синтезированный цАМФ активирует протеинкиназу А, которая активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном - он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.

Эффективность этой аденилатциклазной системы очень высока. Взаимодействие одной или нескольких молекул гормона стимулирует синтез множества молекул цАМФ, что приводит к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.

Другим примером рецепторной активности являются рецепторы ацетилхолина. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, вызывает импульсное поступление Na + в клетку (деполяризация мембраны), открывает сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхности клеток создаёт сложную систему маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо у высших животных уничтожаются в результате иммунологических реакций (см. ниже).

В плазматической мембране находятся специфические рецепторы, реагирующие на физические факторы. Так, в плазматической мембране фотосинтетических бактерий и синезеленых водорослей расположены белки-рецепторы (хлорофиллы), взаимодействующими с квантами света. В плазматической мембране светочувствительных клеток животных локализована фоторецепторные белки (родопсин), с помощью которых световой сигнал превращается в химический, а затем в электрический.

Межклеточное узнавание. В многоклеточных организмах клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток определяется свойствами их поверхности и обеспечивается взаимодействием между гликопротеидами плазматических мембран. При таком межклеточном взаимодействии клеток между плазматическими мембранами всегда остается щель шириной около 20 нм, заполненная гликокаликсом.

Было установлено, что за взаимодействие однородных клеток отвечают трансмембранные гликопротеиды. Непосредственно за соединение, адгезию, клеток отвечают молекулы т.н. CAM-белков (cell adhesion molecules). Некоторые из них связывают клетки друг с другом за счет межмолекулярных взаимодействий, другие образуют специальные межклеточные соединения или контакты.

Когда соседние клетки связываются друг с другом с помощью однородных молекул адгезивных белков взаимодействия называется гомофильным , и когда в адгезии участвуют разного рода CAM на соседних клетках- гетерофильным . Встречается межклеточное связывание через дополнительные линкерные молекулы.

Из CAM-белков выделяют несколько классов. Это кадгерины, молекулы адгезии нервных клеток (иммуноглобулино-подобные N-CAM), селектины, интегрины.

Кадгерины представляют собой интегральные фибриллярные мембранные белки, которые образуют параллельные гомодимеры. Отдельные домены этих белков связаны с ионами Ca 2+ , что придает им определенную жесткость. Кадгеринов насчитывают более 40 видов. Так Е-кадгерин характерен для клеток преимплантированных эмбрионов и для эпителиальных клеток взрослых организмов. P-кадгерин характерен для клеток трофобласта, плаценты и эпидермиса.

Молекулы адгезии нервных клеток (N-CAM) принадлежат к суперсемейству иммуноглобулинов, они образуют связи между нервными клетками. Некоторые из N-CAM участвуют в соединении синапсов, а также при адгезии клеток иммунной системы.

Селектины также интегральные белки плазматической мембраны участвуют в адгезии эндотелиальных клеток, в связывании кровяных пластинок, лейкоцитов.

Интегрины представляют собой гетеродимеры, с a и b-цепями. Интегрины в первую очередь осуществляют связь клеток с внеклеточными субстратами, но могут участвовать и в адгезии клеток друг с другом.

Узнавание чужеродных белков. На попавшие в организм чужеродные макромолекулы (антигены), развивается иммунная реакция. Суть ее заключается в том, что часть лимфоцитов вырабатывает специальные белки - антитела, которые специфически связываются с антигенами. Так, например, макрофаги своими поверхностными рецепторами узнают комплексы антиген-антитело и поглощают их (например, поглощение бактерий при фагоцитозе).

В организме всех позвоночных также существует система рецепции чужеродных клеток или же своих, но с измененными белками плазматической мембраны, например при вирусных инфекциях или при мутациях, часто связанных с опухолевым перерождением клеток.

На поверхности всех клеток позвоночных располагаются белки, т.н. главного комплекса гистосовместимости (major histocompatibility complex - MHC). Это интегральные белки гликопротеины, гетеродимеры. Каждый индивидуум имеет свой набор таких белков MHC. Это приводит к тому, что каждая клетка данного организма отличается от клеток индивидуума этого же вида. Специальная форма лимфоцитов, Т-лимфоциты, узнают MHC своего организма и малейшие изменения в его структуре (например, связь с вирусом, или результат мутации в отдельных клетках), приводит к тому, что Т-лимфоциты узнают такие изменившиеся клетки и их уничтожают. Но уничтожают не путем фагоцитоза а выделяют из секреторных вакуолей белки-перфорины, которые встраиваются в цитоплазматическую мембрану измененной клетки, образуют в ней трансмембранные каналы, тем самым делают плазматическую мембрану проницаемой, что и приводит к гибели измененной клетки (рис. 143, 144).

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.


Понравилась статья? Поделиться с друзьями: