Доверительные интервалы и доверительные вероятности. Точность оценки, доверительная вероятность (надежность)

Выборочное среднее квадратическое отклонение, размах выборки. 7. 2.

Контрольные вопросы

1. Запишите формулы для нахождения выборочного среднего по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

2. Запишите формулы для нахождения выборочного среднего квадратического отклонения по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

3. Назовите числовые характеристики выборки, которые описывают:

1) центр распределения,

2) рассеивание значений случайной величины вокруг центра,

3) симметричность распределения,

4) островершинность распределения?

Часть 2. статистические оценки параметров распределения генеральной совокупности

Тема 1. точечные оценки параметров генеральной совокупности

1. Оценка параметра и ее свойства

Изучаемая генеральная совокупность может быть очень большой. Поэтому ее изучают с помощью выборочного метода. Для выборки из генеральной совокупности вычисляют выборочную среднюю, выборочную дисперсию, и интересующие нас параметры . Например, для нормального распределения – это параметры и https://pandia.ru/text/78/148/images/image101_3.gif" width="16" height="20">.

Как оценить параметры генеральной совокупности, зная значения выборочных параметров?

Статистическая оценка

параметров распределения

Доверительный

Несмещенная Точечная Интервальная интервал

Эффективная оценка оценка

Состоятельная Доверительная

вероятность

* среднее арифметическое * размах варьирования

* медиана * выборочная дисперсия

* мода * выборочное среднее

квадратическое отклонение

Статистическое оценивание параметров распределения

Естественно возникает задача: как оценить (найти приближенное значение) параметра (параметров), которым определяется распределение?

Если генеральную совокупность описывает параметр https://pandia.ru/text/78/148/images/image104_4.gif" width="25" height="20">, которая вычислена по выборке. Например, выборочное среднее оценивает генеральную среднюю ; выборочная дисперсия оценивает генеральную дисперсию ..gif" width="25" height="28 src=">, а параметры – греческими , .

Если статистическая оценка параметра характеризуется одним числом, она называется точечной .

Для каждой конкретной выборки точечная статистическая оценка – это число, т. е. точка на числовой оси.

Статистическая оценка является случайной величиной и меняется в зависимости от выборки.

Для одной и той же неизвестной величины https://pandia.ru/text/78/148/images/image083_3.gif" width="15 height=25" height="25">, выборочная медиана , полусумма крайних элементов.

В силу многообразия оценок, применяемых для оценивания одной и той же неизвестной величины, возникает задача выбора лучшей оценки параметра в определенном смысле..gif" width="25" height="20"> должна быть несмещенной , т. е. ее математическое ожидание должно быть равно оцениваемому параметру.

2..gif" width="24" height="28 src="> представляет собой несмещенную оценку математического ожидания генеральной совокупности .

Выборочная дисперсия https://pandia.ru/text/78/148/images/image112_3.gif" width="20 height=19" height="19">.

Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия , где - поправочный коэффициент.

При больших значения и будут мало отличаться, поэтому «исправление» выборочной дисперсии производят при малых (). В целях повышения надежности полученной оценки следует увеличивать объем выборки.

Пример 1. При обследовании 50 членов семей получен дискретный вариационный ряд.

Определите средний размер (среднее число членов) семьи.

Охарактеризуйте изменчивость размера семьи.

Объясните полученные результаты, сделайте выводы.

Решение

1. В данной задаче изучаемый признак является дискретным , так как размер семей не может отличаться друг от друга менее чем на одного человека. Рассчитаем среднее число членов семьи:

https://pandia.ru/text/78/148/images/image117_3.gif" width="209" height="60">:

https://pandia.ru/text/78/148/images/image119_3.gif" width="39 height=28" height="28">).

Найдем среднее квадратическое отклонение размера семьи: . Среднее квадратическое отклонение размера семьи - 2 человека.

Найдем коэффициент вариации размера семьи по формуле . Коэффициент вариации составляет 38%. Так как коэффициент вариации больше 35%, можно сделать вывод о том, что изучаемая совокупность семей является неоднородной , чем объясняется высокая изменчивость размера семьи в данной совокупности.

Тестовые задания

1. Точечная оценка параметра распределения признака, вычисленная по выборке, характеризуется:

1) одним числом 2) средним значением признака

3) точкой на прямой 4) результатами выборки

2. В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 11, 13, 15. Тогда оценка дисперсии измерений равна:

1) 4; 2) 13; 3) 8; 4) 3.

3. Отметьте правильные ответы. Качество точечной оценки параметра распределения признака характеризуется:

1) несмещенностью; 2) эффективностью;

3) состоятельностью; 4) случайностью.

4. Отметьте правильный ответ. Несмещенная оценка математического ожидания признака:

1) https://pandia.ru/text/78/148/images/image123_2.gif" width="93 height=60" height="60">;

3) https://pandia.ru/text/78/148/images/image125_2.gif" width="115" height="60">.

5. Оценка генеральной средней признака:

1) выборочное среднее значение 2) среднее значение признака

3) наибольшее значение признака 4) математическое ожидание

6. Несмещенная оценка дисперсии признака:

1) https://pandia.ru/text/78/148/images/image127_3.gif" width="176" height="60 src=">;

3) https://pandia.ru/text/78/148/images/image129_3.gif" width="144 height=60" height="60">.

7. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 9, 12 . Оценка математического ожидания равна:

1) 8,25; 2) 8,5 ; 3) 7; 4) 8.

8. Математическое ожидание оценки параметра равно:

1) параметру; 2) выборочному среднему значению;

3) выборочной дисперсии; 4) нулю.

9. Несмещенная и состоятельная оценка генеральной дисперсии:

1) выборочная дисперсия; 2) исправленная выборочная дисперсия;

3) размах признака; 4) приближенное значение дисперсии.

Ответы . 1 . 1). 2. 1). 3 . 1, 2, 3. 4. 2).

5. 1). 6. 1). 7. 4). 8. 1). 9. 2).

контрольные вопросы

1. Дайте определение точечной статистической оценки.

2. Какая оценка параметра распределения называется точечной?

3..gif" width="25" height="28 src=">?

5. Какая числовая характеристика выборки является несмещенной для математического ожидания?

6. Какая числовая характеристика выборки является несмещенной для дисперсии?

Тема 2. интервальные оценки параметров генеральной совокупности

1. Доверительная вероятность и доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра.

Оценка параметра при разных выборках одного и того же объема будет принимать разные значения. Поэтому в ряде задач требуется найти не только подходящее значение параметра, но и определить его точность и надежность .

Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность.

Доверительный интервал – интервал значений, в пределах которого, как можно надеяться, находится параметр генеральной совокупности.

Наша надежда выражается доверительной вероятностью вероятность, с которой доверительный интервал «захватит» истинное значение параметра генеральной совокупности. Чем выше доверительная вероятность, тем шире доверительный интервал. Значение доверительной вероятности выбирает сам исследователь. Обычно это 0,9; 0,95; 0,99.

Если статистическая оценка параметра закона распределения случайной величины https://pandia.ru/text/78/148/images/image131_3.gif" width="53" height="24 src=">, в который попадает оцениваемый параметр с заданной надежностью (вероятностью), называется доверительным интервалом , а вероятность - доверительной вероятностью или уровнем надежности. Число называется уровнем значимости .

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин . Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок. При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции. Если мы установим больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он "накрывает" неизвестное среднее популяции, и наоборот.

Доверительный интервал применяется в случае сравнительно небольшого объема выборки , когда предполагается, что надежность точечной оценки может быть невысокой.

Доверительный интервал симметричен относительно оценки истинного значения параметра и имеет вид , где - предельная ошибка выборки (наибольшее отклонение выборочного значения параметра от его истинного значения)..gif" width="15" height="20">.

Для доверительного интервала половина его длины называется точностью интервального оценивания .

Если выполняется соотношение , то число называется точностью , а число - надежностью оценки генеральной числовой характеристики https://pandia.ru/text/78/148/images/image141_3.gif" width="115" height="25 src="> - выборка объема из генеральной совокупности объема ; - выборочное среднее; - выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности https://pandia.ru/text/78/148/images/image105_2.gif" width="17" height="20 src="> имеет вид

,

где - предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятности и равна половине доверительного интервала.

Https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - исправленное выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image147_2.gif" width="37" height="20 src=">) степеней свободы и доверительной вероятности .

Интервальной оценкой с надежностью генеральной средней https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image151_1.gif" width="39" height="24">, при котором ; - объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т. е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение https://pandia.ru/text/78/148/images/image154_1.gif" width="61 height=28" height="28"> и объем выборки .

Воспользуемся формулой https://pandia.ru/text/78/148/images/image150_1.gif" width="11" height="17 src="> найдем по таблице значений функции Лапласа , с учетом того, что , т. е. ..gif" width="59 height=23" height="23">. Получим доверительный интервал:

https://pandia.ru/text/78/148/images/image162_1.gif" width="135" height="24 src=">.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа..gif" width="19" height="20 src="> в формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

контрольные Вопросы

1. Что понимается под термином «интервальная оценка параметра распределения»?

2. Дайте определение доверительного интервала.

3. Что такое точность оценки и надежность оценки?

4. Что называется доверительной вероятностью? Какие значения она принимает?

5. Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

6. Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.

Часть 3. проверка статистических гипотез

Тема 1. Основные понятия теории принятия статистического решения

1. Нулевая и альтернативная статистические гипотезы

Статистической гипотезой называется такое предположение о виде или свойствах генерального или выборочного распределений, которое можно проверить статистическими методами на основе имеющейся выборк и.

Сущность проверки статистической гипотезы заключается в том, чтобы установить:

· согласуются ли экспериментальные данные и выдвинутая гипотеза;

· допустимо ли отнести расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин.

· о законе распределения генеральной совокупности (например, гипотеза о том, что количество ошибок внимания у младших школьников имеет равномерное распределение);

· о числовых значениях параметров случайной величины (например, гипотеза о том, что среднее количество правильных ответов студентов контрольной группы на десять тестовых вопросов по теме равно восьми);

· об однородности выборок (т. е. принадлежности их одной и той же генеральной совокупности);

· о виде модели , описывающей статистическую зависимость между несколькими признаками (например, предположение о том, что связь между успешностью обучения математики и показателем невербального интеллекта учащихся линейная, прямо пропорциональная).

Условие (1) означает, что в большой серии независимых экспери­ментов, в каждом из которых получена выборка объема п, в среднем (1 - а) 100% из общего числа построенных доверительных интервалов содержат истинное значение параметра 0.

Длина доверительного интервала, характеризующая точность интер­вального оценивания, зависит от объема выборки n и доверительной ве­роятности 1 - α: при увеличении объема выборки длина доверительного интервала уменьшается, а с приближением доверительной вероятности к единице - увеличивается. Выбор доверительной вероятности опреде­ляется конкретными условиями. Обычно используются значения 1 - α, равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние довери­тельные интервалы, границы которых определяются из условий

Ρ [θ < θ 2 ] = 1 - α или Ρ [θ 1 < θ] = 1 - α.

Эти интервалы называются соответственно левосторонними и право­сторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ, необходимо знать закон распределения статистики θ ’ = θ ’ (x 1 , ..., х п ), значение ко­торой является оценкой параметра θ. При этом для получения довери­тельного интервала наименьшей длины при данном объеме выборки n и заданной доверительной вероятности 1 - α в качестве оценки θ пара­метра θ следует брать эффективную либо асимптотически эффективную оценку.

2.1.5. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. КРИТЕРИЙ СОГЛАСИЯ ПИРСОНА.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Пусть по выборке объема n получено эмпирическое распределение:

С помощью критерия Пирсона можно проверить гипотезу о различных законах распределения генеральной совокупности (равномерном, нормальном, показательном и др.) Для этого в предположении о конкретном виде распределения вычисляются теоретические частоты n i ’ , и в качестве критерия выбирается случайная величина.

имеющая закон распределения χ2 с числом степеней свободы k = s – 1 – r, где s – число частичных интервалов выборки, r – число параметров предполагаемого распределения. Критическая область выбирается правосторонней, и граница ее при заданном уровне значимости α находится по таблице критических точек распределения χ2.

Теоретические частоты n i ’ вычисляются для заданного закона распределения

как количества элементов выборки, которые должны были попасть в каждый интервал, если бы случайная величина имела выбранный закон распределения, параметры которого совпадают с их точечными оценками по выборке, а именно:



а) для проверки гипотезы о нормальном законе распределения n i ’ = n · Р i , где

n – объем выборки, , x i и x i +1 левая и правая

границы i-го интервала, - выборочное среднее, s – исправленное среднее квадратическое отклонение. Поскольку нормальное распределение характеризуется двумя параметрами, число степеней свободы k = n – 3.

2.1.6. КВАНТИЛЬ

Квантиль - значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Квантилью уровня P, называется решение уравнения , где P и F заданы.

Квантиль P – значение случайной величины, при котором функция распределения равна P.

В Данной работе будут использованы квантили распределения Стьюдента и хи-квадрат Пирсона.


2.2 РАСЧЁТЫ

Данная выборка

объем выборки

2.3. ВЫВОДЫ

В ходе работы над первой частью курсовой работы был написан подробный

теоретический обзор. Также были решены данные задачи. Получен опыт нахождения статистического ряда, построения гистограммы и полигона частот. После проверки гипотезы было выяснено, что теоретическое меньше, чем практическое. Это означает, что нормальный закон распределения для данной совокупности не подходит.


3 ЧАСТЬ II. РЕГРЕССИОННЫЙ АНАЛИЗ

3.1. ТЕОРИТИЧЕСКИЕ СВЕДЕНЬЯ

Часто у инженера возникает задача выделения сигнала из смеси «сигнал + шум».

Например, на промежутке от t 1 до t 2 функция f(t) имеет вид, но в силу патологического влияния шумов и помех эта кривая превратилась в смесь f(t) + f(n).

Реально мы владеем какой-то информацией и о сигнале и о шуме, но этого недостаточно.

Алгоритм восстановления сигнала из смеси «сигнал + шум»:

1. Задается функция f(t)

2. Генерируется шум с помощью датчика случайных чисел f(n)

3. Построим сумму f(t) + f(n)

4. Принимая модель f(t) в виде полинома третьей степени – кубической параболы. Находим методом МНК коэффициенты этой кубической параболы. Они будут являться функциями y(t)

3.1.1 МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (МНК)

Метод наименьших квадратов (МНК) – это метод оценки неизвестных случайных величин по результатам измерений, содержащим случайные ошибки. В нашем случае дана смесь – сигнал+шум. Наша задача состоит в извлечении истинного тренда.

При помощи метода наименьших квадратов вычисляются коэффициенты аппроксимирующего многочлена. Эта задача решается следующим образом.

Пусть на некотором отрезке в точках … нам известны значения … некоторой функции f(x).

Требуется определить параметры многочлена вида

Где k

такого, что сумма квадратов отклонений значений y от значений функции f(y) в заданных точках x была минимальной, то есть .

Геометрический смысл заключается в том, что график найденного многочлена y = f(x) будет проходить как можно ближе к каждой из заданных точек.

…………………………………………………………………………….

Запишем систему уравнений в матричном виде:

Решением является следующее выражение:

Несмещенная оценка для дисперсии ошибок наблюдений равна:

Чем величина S меньше, тем точнее описывается Y.

N – Объем выборки

k-Число параметров тренда –

Считается по формуле:

Доверительный интервал для коэффициентов тренда считается так:

– квантиль распределения Стьюдента

J-ый диагональный элемент матрицы


3.2 РАСЧЕТЫ

шаг



4. ЗАКЛЮЧЕНИЕ

В ходе выполнения данной курсовой работы был получен опыт нахождения

точечной оценки и доверительного интервала для таких величин, как математическое

ожидание и дисперсия, закреплены навыки построения гистограммы и полигона частот

для некоторой выборки значений.

Так же был освоен метод наименьших квадратов (МНК), как один из способов

в регрессионном анализе для извлечения истинного тренда из смеси сигнал + шум.

Полученные в ходе работы навыки можно использовать не только в учебной

деятельности, но и в повседневной жизни.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Симонов А.А. Выск Н.Д. Проверка статистических гипотез:

Методические указания и варианты курсовых заданий. Москва, 2005, 46 с.

2. Ю. И. Галанов. Математическая статистика: учебное пособие.

Издательство ТПУ. Москва, 2010, 66 с.

3. Вентцель Е.С. Теория вероятностей: Учебник для студ. вузов, 2005. – 576 с.

4. Э. А. Вуколов, А. В. Ефимов, В.Н. Земсков, А. С. Поспелов. Сборник задач по математике для ВТУЗОВ: Учебник для студентов вузов.

Москва, 2003, 433 с.

5. Чернова Н. И. Математическая статистика: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2007. 148 с.

Доверительные интервалы.

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.



Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

Пусть измерение проводят несколько раз, причем условия эксперимента поддерживают, насколько возможно, неизменными. Поскольку строго соблюдать неизменность условий невозможно, результаты отдельных измерений будут несколько различаться. Их можно рассматривать как значения случайной величины g, распределенной по некоторому закону, заранее нам неизвестному.

Очевидно, математическое ожидание равно точному значению измеряемой величины (строго говоря, точному значению плюс систематическая ошибка).

Обработка измерений основана на центральной предельной теореме теории вероятностей: если с есть случайная величина, распределенная по любому закону, то

есть также случайная величина, причем

а закон распределения величины стремится к нормальному (гауссову) при . Поэтому среднеарифметическое нескольких независимых измерений

является приближенным значением измеряемой величины, причем с тем большей надежностью, чем больше число измерений .

Однако равенство не является точным, и нельзя даже строго указать предел его ошибки; в принципе может сколь угодно сильно отличаться от хотя вероятность такого события ничтожно мала.

Ошибка приближенного равенства (2) носит вероятностный характер и описывается доверительным интервалом Р, т. е. границей, которую с доверительной вероятностью не превышает разность . Символически это записывают следующим образом:

Доверительный интервал зависит от закона распределения (а тем самым от постановки эксперимента), от числа измерений , а также от выбранной доверительной вероятности . Из (3) видно, что чем ближе к единице, тем шире оказывается доверительный интервал.

Доверительную вероятность выбирают, исходя из практических соображений, связанных с применениями полученных результатов. Например, если мы делаем игрушечный воздушный змей, то вероятность благополучного полета нас устроит, а если конструируем самолет, то даже вероятность недостаточна. Во многих физических измерениях считается достаточной.

Замечание 1. Пусть требуется найти величину z, но измерять удобнее величину связанную с ней известным соотношением например, нас интересует джоулево тепло, а измерять легче ток. При этом следует помнить, что

так, среднее значение переменного тока равно нулю, а средний джоулев нагрев отличен от нуля. Поэтому, если мы вычислим сначала а затем положим это будет грубая ошибка. Следует по каждому измерению вычислять и далее обрабатывать полученные значения .

Ширина доверительного интервала. Если известна плотность распределения величины то доверительный интервал можно определить из (3), разрешая уравнение

относительно . Выше отмечалось, что при распределение стремится к нормальному

здесь - дисперсия распределения, а величину называют стандартным отклонением или просто стандартом.

Подставляя (5) в (4) и полагая , т. е. измеряя доверительный интервал в долях стандарта, получим соотношение

(6)

Интеграл ошибок, стоящий в правой части (6), табулирован, так что из этого соотношения можно определить доверительный интервал . Зависимость дается в таблице 23 строкой, соответствующей

Из таблицы 23 видно, что доверительный интервал соответствует доверительной вероятности так что отклонение от более чем на маловероятно. Но отклонение более чем на довольно вероятно, поскольку ширине соответствует

Таким образом, если известна дисперсия то нетрудно определить стандарт и, тем самым, абсолютную ширину доверительного интервала . В этом случае даже при выполнении одного измерения можно оценить случайную ошибку , а увеличение числа измерений позволяет уменьшать доверительный интервал, поскольку

Критерий Стьюдента. Чаще всего дисперсия D? неизвестна, поэтому выполнить оценку ошибки указанным выше способом обычно не удается. При этом точность однократного измерения неизвестна. Однако, если измерение повторено несколько раз, можно приближенно найти дисперсию:

Точность этого выражения невелика по двум причинам: во-первых, число членов суммы обычно мало; во-вторых, использование замены вносит ошибку значительную при малых n. Более хорошее приближение дает так называемая несмещенная оценка дисперсии:

где величину s называют стандартом выборки.

Оценка (8) также является приближенной, поэтому нельзя пользоваться формулой (6), заменяя в ней на Надо вносить в нее поправку, тем большую, чем меньше . Если распределение считать нормальным при любых , то связь доверительного интервала со стандартом выборки устанавливается критерием Стьюдента:

где коэффициенты Стьюдента представлены в таблице 23.

Таблица 23

Коэффициенты Стьюдента

Очевидно, при больших с хорошей точностью выполняется . Поэтому при критерий Стьюдента переходит в формулу (6); выше отмечалось, что этой формуле соответствует строка таблицы 23. Однако при малых доверительный интервал (8) оказывается много шире, чем по критерию (6).

Пример 1. Выбрано и выполнено 3 измерения; по таблице 23 доверительный интервал равен

К сожалению, не все физики и инженеры знакомы с понятием доверительного интервала и критерием Стьюдента. Нередко встречаются экспериментальные работы, в которых при малом числе измерений пользуются критерием или даже считают, что значение является погрешностью величины , и вдобавок оценивают дисперсию по формуле (7).

Для приведенного выше йримера при первой ошибке был бы дан ответ при второй а при третьей что сильно отличается от правильного значения.

Замечание 2. Зачастую одна и та же величина измерена в разных лабораториях на разном оборудовании. Тогда следует найти среднее и стандарт по формулам (2) и (8), где суммирование проводится по всем измерениям во всех лабораториях, и определить доверительный интервал по критерию Стьюдента.

Нередко при этом суммарный стандарт s оказывается больше, чем стандарты определенные по данным отдельных лабораторий. Это естественно. Каждая лаборатория делает при измерениях систематические ошибки, и часть систематических ошибок в разных лабораториях совпадает, а часть различается. При совместной обработке различающиеся систематические ошибки переходят в разряд случайных, увеличивая стандарт.

Значит, при совместной обработке разнотипных измерений обычно систематическая ошибка значения будет меньше, а случайная больше. Но случайную ошибку можно сколь угодно уменьшить, увеличивая число измерений. Поэтому такой способ позволяет получить окончательный результат с большей точностью.

Замечание 3. Если в разных лабораториях используется оборудование разного класса точности, то при такой совместной обработке надо суммировать с весами

где относятся, как квадраты точности приборов.

Произвольное распределение. Чаще всего число измерений невелико и заранее неясно, можно ли считать распределение нормальным и пользоваться приведенными выше критериями.

Для произвольного распределения справедливо неравенство Чебышева

Отсюда можно оценить доверительный интервал:

Коэффициент в этой оценке приведен в дополнительной строке таблицы 23.

Из таблицы видно, что если в качестве доверительной вероятности принять то для произвольного закона распределения сизвестной дисперсией доверительный интервал не превышает . Для симметричного одновершинного распределения аналогичные оценки показывают, что доверительный интервал не превышает напомним, что для нормального распределения он равен (при выбранном ).

Разумеется, если вместо используют найденное по тем же измерениям значение то надо строить критерий, аналогичный критерию Стьюдента. Оценки при этом будут существенно хуже приведенных.

Проверка нормальности распределения. Из сравнения критериев (6) и (11) видно, что даже при невысокой доверительной вероятности оценки доверительного интервала при произвольном распределении вдвое хуже, чем при нормальном. Чем ближе к единице, тем хуже соотношение этих оценок. Поэтому целесообразно проверять, существенно ли отличается распределение от нормального.

Распространенный способ проверки - исследование так называемых центральных моментов распределения:

Два первых момента, по определению, равны Для нормального распределения два следующих момента равны Обычно ограничиваются этими моментами. Вычисляют их фактические значения по проведенным измерениям и проверяют, согласуются ли они со значениями, соответствующими нормальному распределению.

Удобно вычислять не сами моменты, а составленные из них безразмерные комбинации - асимметрию и эксцесс для нормального распределения они обращаются в нуль. Аналогично дисперсии, вычислим их по несмещенным оценкам:

где s определяется формулой (8). Собственные дисперсии этих величин известны и зависят только от числа измерений:

причем собственное распределение А является симметричным.

Поэтому, если выполняются соотношения

то по критерию Чебышева (11) отличие А и Е от нуля недостоверно, так что можно принять гипотезу о нормальности распределения

Формулы (13)-(15) непосредственно относятся к распределению единичного измерения. На самом деле надо проверить, нормально ли распределение среднеарифметического при выбранном . Для этого делают большое число измерений разбивают их на групп по измерений в каждой и среднее значение в каждой группе рассматривают как единичное измерение. Тогда проверка выполняется по формулам (13)-(15), где вместо надо подставить .

Разумеется, такую тщательную проверку проводят не в каждой измеряемой точке, а лишь во время отработки методики эксперимента.

Замечание 4. Аналогично проверяют любые естественнонаучные гипотезы. Производят большое число экспериментов и выясняют, нет ли среди них событий, маловероятных с точки зрения этой гипотезы. Если найдутся такие события, то гипотезу отвергают, если нет - условно принимают.

Выбор . За счет увеличения числа измерений можно неограниченно уменьшать доверительный интервал. Однако систематическая ошибка при этом не уменьшается, так что суммарная ошибка все равно будет больше Поэтому целесообразно выбрать я так, чтобы ширина доверительного интервала составляла Дальнейшее увеличение числа измерений бессмысленно.

Cтраница 2


Качество исходных данных (статистика) о показателях надежности электрооборудования (вместе с показателями ущерба от нарушений электроснабжения и сведениями о режимах работы и ППР) оценивается точностью - шириной доверительного интервала, накрывающего показатель, и достоверностью - вероятностью не совершить ошибку, выбирая этот интервал. Точность математических моделей надежности оценивается их адекватностью реальному объекту, а точность метода расчета надежности - адекватностью полученного решения идеальному.  

Теперь коэффициент вариации дебита, так же как и сам дебит, существенно зависит от &0 / &1 - Так, например, при pi 1 м и ku / k 5 средний дебит уменьшается по сравнению с первоначальным примерно в 2 раза, а ширина доверительного интервала почти в 3 раза. Очевидно, уточнение параметров призабойной зоны в этом случае дает существенную информацию и значительно улучшает качество прогноза.  


Неизменность числа испытаний п на каждой ступени оказывает существенное влияние иа точность результатов. Ширина доверительного интервала уменьшается с увеличением объема выборки.  

Доверительными называют интервалы, в пределах которых находятся с определенными (доверительными) вероятностями истинные значения оцениваемых параметров. Обычно ширину доверительного интервала выражают через СКО результатов отдельных наблюдений ах.  

Ширина доверительного интервала зависит от желаемой статистической надежности е, объема выборки п и от распределения случайных значений, в особенности от разброса. Длина и ширина доверительных интервалов определяется также имеющейся (случайной) выборкой.  

Однако ширина доверительного интервала при этом получается неприемлемо большой. Однако и в этом случае ширина доверительного интервала получается слишком большой.  


Отсюда границы доверительного интервала составляют (23 85 - 2 776 - 0 13; 23 85 2 776Х Х0 13) (23 49; 24 21) МПа. Из результатов видно, что ширина доверительного интервала для той же вероятности должна быть почти в 1 5 раза больше за счет того, что при меньшем числе измерений доверие к ним меньше.  

Из соотношения (2.29) следует, что вероятность того, что доверительный интервал (0 - Д; в Д) со случайными границами накроет известный параметр 0, равна у. Величину Д, равную половине ширины доверительного интервала, называют точностью оценки, а вероятность у - доверительной вероятностью (или надежностью) оценки.  

Интервал (04, 042) называется доверительным, его границы 04 и 0W, являющиеся случайными величинами, соответственно нижним и верхним доверительными пределами. Любая интервальная оценка может быть охарактеризована совокупностью двух чисел: шириной доверительного интервала Н 04 - 0И, являющейся мерой точности оценивания параметра 0, и доверительной вероятностью у, характеризующей степень достоверности (надежности) результатов.  

При этих условиях доверительные границы определяются: для Мэ и а с помощью - распределения, а для Мн - с помощью распределения Стьюдента. Из графиков видно, что при малом числе п наблюдавшихся отказов ширина доверительного интервала, которая характеризует возможное отклонение в оценке параметра распределения, велика. Действительное значение параметра может в несколько раз отличаться от полученного из опыта значения соответствующей статистической оценки. С увеличением п границы доверительного интервала постепенно суживаются. Для получения достаточно точных и достоверных оценок требуется, чтобы при испытании наблюдалось большое число отказов, что, в свою очередь, требует значительного объема испытаний, особенно при высокой надежности объектов.  



Понравилась статья? Поделиться с друзьями: