Энергия связи атомных ядер — Гипермаркет знаний. Энергия связи ядер

>> Энергия связи атомных ядер

§ 105 ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР

Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна той энергии, которая выделяется при образовании ядра из отдельных частии.

Энергия связи атомных ядер очень велика. Но как ее определить?

В настоящее время рассчитать энергию связи теоретически, подобно тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией:

Е = mс 2 . (13.3)

Точнейшие измерения масс ядер показывают, что масса покоя ядра М21 всегда меньше суммы масс входящих в его состав протонов и нейтронов:

М я < Zm p + Nm n . (13.4)

Существует, как говорят, дефект масс: разность масс

М = Zm p + Nm n - М я

положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль M = 0,03 г.

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на значение энергии связи Есв:

Е св = Мс 2 = (Zm p + Nm n - M я) с 2 . (13.5)

Но куда при этом исчезают энергия Е св и масса M?

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом -кванты как раз обладают енергией Е св и массой .

Энергия связи - это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и при сгорании 1,5-2 вагонов каменного угля.

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Из рисунка 13.11 хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода , равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке 13.11 имеет слабо выраженный максимум.

Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему но порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением Z кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро .

Частицы в ядре сильно связаны друг с другом. Энергия связи частиц определяется по дефекту масс.


1. Что называют энергией связи ядра!
2. Почему ядро меди более устойчиво, чем ядро урана!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Более детально (2.3) записывается следующим образом:

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Процесс полного расщепления ядра на составляющие его нуклоны является скорее гипотетическим. В действительности при делении ядер и других ядерных реакциях происходит распад ядра на два, реже более осколков. Знание энергии связи ядер позволяет рассчитать энергетический баланс не только для довольно редкого процесса полного расщепления, но и для любых процессов распада и взаимных превращений ядер. Например, энергия E p отделения протона, т.е. минимальная энергия, необходимая для выбивания протона из ядра Z X A равна разности энергий связи ядер Z X A и Z-1 X A-1:

Для выбивания из ядра α-частицы нужна энергия, равная:

Этот вариант формулы более удобен, так как в большинстве экспериментов измеряется масса атома, а не масса ядра. Поэтому в таблицах обычно приводятся значения масс нейтральных атомов.

Энергия связи любого ядра положительна; она должна составлять заметную часть его энергии покоя. Точные значения масс атомных ядер определяются с помощью специальных приборов, называемых масс-спектрометрами .

Энергия связи, отнесенная к массовому числу А называется удельной энергией связи нуклонов в ядре:

E уд = ΔE св / A = Δmc 2 / A.

Величина E уд показывает, какую энергию в среднем необходимо затратить, чтобы удалить из ядра один нуклон, не сообщая ему кинетической энергии. Величина E уд уд имеет своё значение для каждого ядра. Чем больше E уд , тем более устойчиво ядро. На рисунке 2.2 приведена зависимость E уд от массового числа A .

Видно, что E уд вырастает от 0 МэВ при А = 1 (протон) до 8.7 МэВ при A =50-60 (24 Cr - 30 Zn) и постепенно уменьшается до 7.5 МэВ для последнего встречающего в природе элемента (92 U). Для сравнения, энергия связи валентных электронов в атоме порядка 10 эВ , что в миллион раз меньше. Из рисунка 2.2 видно, что наибольшей удельной энергией связи обладают ядра с массовыми числами в диапазоне от 50 до 60. С уменьшением или возрастанием A удельная энергия связи уменьшается с разной интенсивностью, так как уменьшение удельной энергии происходит по разным механизмам.

Главные причины различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: поверхностные и внутренние.

Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же имеют соседей только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно повышается по мере утяжеления. Поэтому и энергия связи растет вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого число нуклонов (A = 50-60) количество протонов становится настолько большим (практически в любом ядре протоны составляют не менее 40% общего числа нуклонов), что делается заметным их взаимное электрическое отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер.

Различие в энергии связи разных ядер может быть использовано для освобождения внутриядерной энергии . Энергетически выгодно:

  • деление тяжелых ядер на более легкие;
  • слияние легких ядер друг с другом в более тяжелые.

Как в первом, так и во втором случаях получаются более прочные (более устойчивые) ядра, чем исходные. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время реализованы практически: реакции деления ядер и реакции термоядерного синтеза ядер (глава 4).

Проблема термоядерного синтеза решена наполовину: освоен взрывной синтез.

Среднее значение уд > равно 8 МэВ , причем для большинства ядер E уд ≈ уд > = 8 МэВ. Поэтому энергия связи атомных ядер в первом приближении может быть выражена через массовое число соотношением:

ΔE св ≈ ∙A ≈ 8 МэВ.

Это соотношение позволяет сделать два вывода относительно свойств ядерных сил, связывающих нуклоны в ядре.

Из пропорциональности ΔЕ св и A следует свойство насыщения ядерных сил, т.е. способность нуклона к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными (A - 1) нуклонами, то суммарная энергия связи была бы пропорциональна A ∙(A - 1) ≈ A 2 ,не A .

Энергия связи является мерой прочности ядра. Особенно велика энергия связи у 2 He 4 , 6 С 12 , 8 О 16 и других четно-четных ядер.

Ядра с полностью заполненными оболочками являются наиболее устойчивыми - магические ядра, у которых число протонов Z или нейтронов N равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 26.

Ядра, у которых магическими являются и Z , и N , называются дважды магическими. Дважды магических ядер известно всего пять: 2 He 4 , 8 О 16 , 20 Ca 40 , ???, 82 Pb 208 .

В частности, особенная устойчивость ядра гелия проявляется в том, что это единственная частица, испускаемая тяжелыми ядрами при радиоактивном распаде (она называется α-частицей).

Из большой величины средней энергии связи уд > ≈ 8 МэВ следует чрезвычайно большая интенсивность ядерного взаимодействия. Так, например, средняя энергия связи нуклона в ядре 2 He 4 ( уд > ≈ 7 МэВ ) существенно больше кулоновского расталкивания двух протонов этого ядра. Это следовало ожидать: в противном случае протоны в ядре не могли бы быть связаны.

Энергия связи

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm : ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8 10 6 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, «Черная дыра» (См. Чёрная дыра)).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Под энергией связи атомного ядра понимают энергию, которую нужно затратить, чтобы расщепить ядро на отдельные нуклоны. Такая же энергия выделяется при образовании ядра из свободных нуклонов. Ее можно рассчитать, пользуясь формулой Л. Эйнштейна, связывающей массу частицы и энергию:

\(~W = mc^2\)

После создания масс-спектрографа можно было с большой точностью (до 0,01 %) измерить массы всех изотопов элементов таблицы Менделеева, что и сделано учеными.

Анализ этих данных показывает, что для всех элементов масса покоя ядра меньше, чем сумма масс покоя составляющих его нуклонов, если последние находятся в свободном состоянии. Это различие может быть охарактеризовано величиной

\(~\Delta m = \sum m_n - n_{ja} = Zm_p + (A-Z)m_n - m_{ja},\)

которая носит название дефекта масс. Уменьшение массы при образовании ядра из свободных частиц означает, что при этом уменьшается энергия этой системы частиц на величину энергии связи

\(~W_{sv} = \Delta mc^2 = (Zm_p+(A - Z)m_n - m_{ja})c^2 .\)

Энергия связи определяется величиной работы, которую нужно совершить для расщепления ядра на составляющие его нуклоны. Но куда расходуется эта энергия?

При образовании ядра из нуклонов последние за счет действия ядерных сил на малых расстояниях устремляются друг к другу с огромными ускорениями. Излучаемые при этом \(~\gamma\)-кванты обладают энергией связи W sv , т.е. при образовании ядер из нуклонов эта энергия связи выделяется. Энергия связи очень велика (ее обычно выражают в МэВ: 1 МэВ = 10 6 эВ = = 1,6 \(\cdot\) 10 -13 Дж). Об этой величине можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, как при сгорании 5-6 вагонов каменного угля.

Важной характеристикой ядра служит средняя энергия связи ядра, приходящаяся на один нуклон (так называемая удельная энергия связи ядра ),

\(\omega_{sv} = \frac{W_{sv}}{A}\)

Чем она больше, тем сильнее связаны между собой нуклоны, тем прочнее ядро. Эту удельную энергию связи \(~\omega_{sv}\) всегда можно подсчитать. Результаты показывают, что для большинства ядер \(\omega_{sv}\approx 8\) МэВ и уменьшается для очень легких и очень тяжелых ядер.

По мере увеличения числа нуклонов в ядре возрастают кулоновские силы отталкивания между протонами, ослабляющие связи в ядре, и величина \(~\omega_{sv}\) у тяжелых ядер уменьшается. Величина \(~\omega_{sv}\) максимальна у ядер средней массы (А = 50...60), следовательно, они отличаются наибольшей прочностью (рис. 22.1).

Процессы деления тяжелых ядер и синтеза легких являются энергетически выгодными, потому что сопровождаются возрастанием энергии связи, т.е. выделением энергии. На этом основано, как мы увидим ниже, получение атомной энергии при делении тяжелых ядер и термоядерной энергии - при синтезе легких.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 612-613.

Абсолютно любого химического вещества состоит из определенного набора протонов и нейтронов. Они удерживаются вместе благодаря тому, что внутри частицы присутствует энергия связи атомного ядра.

Характерной особенностью ядерных сил притяжения является их очень большая мощность на сравнительно маленьких расстояниях (примерно от 10 -13 см). С ростом расстояния между частицами ослабевают и силы притяжения внутри атома.

Рассуждение об энергии связи внутри ядра

Если представить, что имеется способ отделять по очереди от ядра атома протоны и нейтроны и располагать их на таком расстоянии, чтобы энергия связи атомного ядра переставала действовать, то это должно быть очень тяжелой работой. Для того чтобы извлечь из ядра атома его составляющие, нужно постараться преодолеть внутриатомные силы. Эти усилия пойдут на то, чтобы разделить атом на содержащиеся в нем нуклоны. Поэтому можно судить, что энергия атомного ядра меньше чем энергия тех частиц, из которых оно состоит.

Равна ли масса внутриатомных частиц массе атома?

Уже в 1919 году исследователи научились измерять массу атомного ядра. Чаще всего его «взвешивают» при помощи особых технических приборов, которые получили название масс-спектрометров. Принцип работы таких приборов состоит в том, что сравниваются характеристики движения частиц с различными массами. При этом такие частицы имеют одинаковые электрические заряды. Подсчеты показывают, что те частицы, которые обладают разными показателями массы, двигаются по различным траекториям.

Современные ученые выяснили с большой точностью массы всех ядер, а также входящих в их состав протонов и нейтронов. Если же сравнить массу определенного ядра с суммой масс содержащихся в нем частиц, то окажется, что в каждом случае масса ядра будет больше, чем масса отдельно взятых протонов и нейтронов. Эта разница составит приблизительно 1% для любого химического вещества. Поэтому можно сделать вывод, что энергия связи атомного ядра - это 1% энергии его покоя.

Свойства внутриядерных сил

Нейтроны, которые находятся внутри ядра, отталкиваются друг от друга кулоновскими силами. Но при этом атом не распадается на части. Этому способствует присутствие силы притяжения между частицами в атоме. Такие силы, которые имеют природу, отличную от электрической, называются ядерными. А взаимодействие нейтронов и протонов называется сильным взаимодействием.

Вкратце свойства ядерных сил сводятся к следующим:

  • это зарядовая независимость;
  • действие лишь на коротких расстояниях;
  • а также насыщаемость, под которой понимается удерживание друг около друга лишь определенного количества нуклонов.

По закону сохранения энергии, в тот момент, когда ядерные частицы соединяются, происходит выброс энергии в виде излучения.

Энергия связи атомных ядер: формула

Для упомянутых вычислений используется общепринятая формула:

Е св =(Z·m p +(A-Z)·m n -M я )·c²

Здесь под Е св понимается энергия связи ядра; с - скорость света; Z -количество протонов; (A-Z ) - число нейтронов; m p обозначает массу протона; а m n - массу нейтрона. M я обозначает массу ядра атома.

Внутренняя энергия ядер различных веществ

Чтобы определить энергию связи ядра, используется одна и та же формула. Вычисляемая по формуле энергия связи, как ранее уже было указано, составляет не более 1% от общей энергии атома или энергии покоя. Однако при детальном рассмотрении оказывается, что это число довольно сильно колеблется при переходе от вещества к веществу. Если попробовать определить его точные значения, то они будут особенно различаться у так называемых легких ядер.

Например, энергия связи внутри водородного атома составляет ноль, потому что в нем находится лишь один протон.Энергия связи ядра гелия будет равна 0,74%. У ядер вещества под названием тритий это число будет равно 0,27%. У кислорода - 0,85%. В ядрах, где находится порядка шестидесяти нуклонов, энергия внутриатомной связи будет составлять около 0,92%. Для атомных ядер, обладающих большей массой, это число будет постепенно уменьшаться до 0,78%.

Чтобы определить энергию связи ядра гелия, трития, кислорода, или же любого другого вещества, используется та же формула.

Типы протонов и нейтронов

Основные причины подобных различий могут быть объяснены. Ученые выяснили, что все нуклоны, которые содержатся внутри ядра, делятся на две категории: поверхностные и внутренние. Внутренние нуклоны - это те, что оказываются окружены другими протонами и нейтронами со всех сторон. Поверхностные же окружены ими лишь изнутри.

Энергия связи атомного ядра - это сила, которая выражена больше у внутренних нуклонов. Нечто подобное, кстати, происходит и при поверхностном натяжении различных жидкостей.

Сколько нуклонов помещается в ядре

Выяснено, что количество внутренних нуклонов особенно мало у так называемых легких ядер. А у тех, что относятся к категории самых легких, практически все нуклоны расцениваются как поверхностные. Считается, что энергия связи атомного ядра - это величина, которая должна расти с количеством протонов и нейтронов. Но даже такой рост не может продолжаться до бесконечности. При определенном количестве нуклонов - а это от 50 до 60 - приходит в действие другая сила - их электрическое отталкивание. Оно происходит даже независимо от наличия энергии связи внутри ядра.

Энергия связи атомного ядра в различных веществах используется учеными для того, чтобы высвободить ядерную энергию.

Многих ученых всегда интересовал вопрос: откуда возникает энергия, когда более легкие ядра сливаются в тяжелые? На самом деле, данная ситуация аналогична атомному делению. В процессе слияния легких ядер, точно так же, как это происходит при расщеплении тяжелых, всегда образуются ядра более прочного типа. Чтобы «достать» из легких ядер все находящиеся в них нуклоны, требуется затратить меньше количество энергии, нежели то, что выделяется при их объединении. Обратное утверждение также является верным. На самом деле энергия синтеза, которая приходится на определенную единицу массы, может быть и больше удельной энергии деления.

Ученые, исследовавшие процессы деления ядра

Процесс был открыт учеными Ганом и Штрасманом в 1938 году. В стенах Берлинского химического университета исследователи открыли, что в процессе бомбардировки урана другими нейтронами, он превращается в более легкие элементы, стоящие в середине таблицы Менделеева.

Немалый вклад в развитие этой области знания внесла и Лиза Мейтнер, которой Ган в свое время предложил изучать радиоактивность вместе. Ган разрешил Мейтнер работать лишь на том условии, что она будет проводить свои исследования в подвале и никогда не станет подниматься на верхние этажи, что было фактом дискриминации. Однако это не помешало достичь ей значительных успехов в исследованиях атомного ядра.



Понравилась статья? Поделиться с друзьями: