Градиентные методы обучения. Метод Данцига

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

по данному курсу,

Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (

Включающий в себя два уровня - уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

учебный план

задания на лабораторные работы

#AutBody_14DocRoot

#AutBody_15DocRoot

Нейроучебник

#AutBody_16DocRoot

проект стандарта нейрокомпьютера

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Книга:

Разделы на этой странице:

Изучению градиентных методов обучения нейронных сетей посвящено множество работ (сослаться на все работы по этой теме не представляется возможным, поэтому дана ссылка на работы, где эта тема исследована наиболее детально). Кроме того, существует множество публикаций, посвященных градиентным методам поиска минимума функции (как и в предыдущем случае, ссылки даны только на две работы, которые показались наиболее удачными). Данный раздел не претендует на какую-либо полноту рассмотрения градиентных методов поиска минимума. В нем приведены только несколько методов, применявшихся в работе группой «НейроКомп». Все градиентные методы объединены использованием градиента как основы для вычисления направления спуска.

Метод наискорейшего спуска

1. Вычислить_оценку О2
2. О1=О2
3. Вычислить_градиент
4. Оптимизация шага Пустой_указатель Шаг
5. Вычислить_оценку О2
6. Если О1-О2<Точность то переход к шагу 2

Рис. 5. Метод наискорейшего спуска

Наиболее известным среди градиентных методов является метод наискорейшего спуска. Идея этого метода проста: поскольку вектор градиента указывает направление наискорейшего возрастания функции, то минимум следует искать в обратном направлении. Последовательность действий приведена на рис. 5.

Этот метод работает, как правило, на порядок быстрее методов случайного поиска. Он имеет два параметра - Точность, показывающий, что если изменение оценки за шаг метода меньше чем Точность, то обучение останавливается; Шаг - начальный шаг для оптимизации шага. Заметим, что шаг постоянно изменяется в ходе оптимизации шага.




Рис. 6. Траектории спуска при различных конфигурациях окрестности минимума и разных методах оптимизации.

Остановимся на основных недостатках этого метода. Во-первых, эти методом находится тот минимум, в область притяжения которого попадет начальная точка. Этот минимум может не быть глобальным. Существует несколько способов выхода из этого положения. Наиболее простой и действенный - случайное изменение параметров с дальнейшим повторным обучение методом наискорейшего спуска. Как правило, этот метод позволяет за несколько циклов обучения с последующим случайным изменением параметров найти глобальный минимум.

Вторым серьезным недостатком метода наискорейшего спуска является его чувствительность к форме окрестности минимума. На рис. 6а проиллюстрирована траектория спуска при использовании метода наискорейшего спуска, в случае, если в окрестности минимума линии уровня функции оценки являются кругами (рассматривается двумерный случай). В этом случае минимум достигается за один шаг. На рис. 6б приведена траектория метода наискорейшего спуска в случае эллиптических линий уровня. Видно, что в этой ситуации за один шаг минимум достигается только из точек, расположенных на осях эллипсов. Из любой другой точки спуск будет происходить по ломаной, каждое звено которой ортогонально к соседним звеньям, а длина звеньев убывает. Легко показать что для точного достижения минимума потребуется бесконечное число шагов метода градиентного спуска. Этот эффект получил название овражного, а методы оптимизации, позволяющие бороться с этим эффектом - антиовражных.

kParTan

1. Создать_вектор В1
2. Создать_вектор В2
3. Шаг=1
4. Вычислить_оценку О2
5. Сохранить_вектор В1
6. О1=О2
7. N=0
8. Вычислить_градиент
9. Оптимизация_шага Пустой_указатель Шаг
10. N=N+1
11. Если N 12. Сохранить_вектор В2
13. В2=В2-В1
14. ШагParTan=1
15. Оптимизация шага В2 ШагParTan
16. Вычислить_оценку О2
17. Если О1-О2<Точность то переход к шагу 5

Рис. 7. Метод kParTan

Одним из простейших антиовражных методов является метод kParTan. Идея метода состоит в том, чтобы запомнить начальную точку, затем выполнить k шагов оптимизации по методу наискорейшего спуска, затем сделать шаг оптимизации по направлению из начальной точки в конечную. Описание метода приведено на рис 7. На рис 6в приведен один шаг оптимизации по методу 2ParTan. Видно, что после шага вдоль направления из первой точки в третью траектория спуска привела в минимум. К сожалению, это верно только для двумерного случая. В многомерном случае направление kParTan не ведет прямо в точку минимума, но спуск в этом направлении, как правило, приводит в окрестность минимума меньшего радиуса, чем при еще одном шаге метода наискорейшего спуска (см. рис. 6б). Кроме того, следует отметить, что для выполнения третьего шага не потребовалось вычислять градиент, что экономит время при численной оптимизации.

Рассмотрим задачу безусловной минимизации дифференцируемой функции многих переменных Пусть приближение к точке минимума значение градиента в точке Выше уже отмечалось, что в малой окрестности точки направление наискорейшего убывания функции задается антиградиентом Это свойство существенно используется в ряде методов минимизации. В рассматриваемом Ниже градиентном методе за направление спуска из точки непосредственно выбирается Таким образом, согласно градиентному методу

Существуют различные способы выбора шага каждый из которых задает определенный вариант градиентного метода.

1. Метод наискорейшего спуска.

Рассмотрим функцию одной скалярной переменной и выберем в качестве то значение, для которого выполняется равенство

Этот метод, предложенный в 1845 г. О. Коши, принято теперь называть методом наискорейшего спуска.

На рис. 10.5 изображена геометрическая иллюстрация этого метода для минимизации функции двух переменных. Из начальной точки перпендикулярно линии уровня в направлении спуск продолжают до тех пор, пока не будет достигнуто минимальное вдоль луча значение функции . В найденной точке этот луч касается линии уровня Затем из точки проводят спуск в перпендикулярном линии уровня направлении до тех пор, пока соответствующий луч не коснется в точке проходящей через эту точку линии уровня, и т. д.

Отметим, что на каждой итерации выбор шага предполагает решение задачи одномерной минимизации (10.23). Иногда эту операцию удается выполнить аналитически, например для квадратичной функции.

Применим метод наискорейшего спуска для минимизации квадратичной функции

с симметричной положительно определенной матрицей А.

Согласно формуле (10.8), в этом случае Поэтому формула (10.22) выглядит здесь так:

Заметим, что

Эта функция является квадратичной функцией параметра а и достигает минимума при таком значении для которого

Таким образом, применительно к минимизации квадратичной

функции (10.24) метод наискорейшего спуска эквивалентен расчету по формуле (10.25), где

Замечание 1. Поскольку точка минимума функции (10.24) совпадает с решением системы метод наискорейшего спуска (10.25), (10.26) может применяться и как итерационный метод решения систем линейных алгебраических уравнений с симметричными положительно определенными матрицами.

Замечание 2. Отметим, что где отношение Рэлея (см. § 8.1).

Пример 10.1. Применим метод наискорейшего спуска для минимизации квадратичной функции

Заметим, что Поэтому точное значение точки минимума нам заранее известно. Запишем данную функцию в виде (10.24), где матрица и вектор Как нетрудно видеть,

Возьмем начальное приближение и будем вести вычисления по формулам (10.25), (10.26).

I итерация.

II итерация.

Можно показать, что для всех на итерации будут получены значения

Заметим, что при Таким образом,

последовательность полученная методом наискорейшего спуска, сходится со скоростью геометрической прогрессии, знаменатель которой

На рис. 10.5 изображена именно та траектория спуска, которая была получена в данном примере.

Для случая минимизации квадратичной функции справедлив следующий общий результат .

Теорема 10.1. Пусть А - симметричная положительно определенная матрица и минимизируется квадратичная функция (10.24). Тогда при любом выборе начальною приближения метод наискорейшею спуска (10.25), (10.26) сходится и верна следующая оценка погрешности:

Здесь и Ладо - минимальное и максимальное собственные значения матрицы А.

Отметим, что этот метод сходится со скоростью геометрической прогрессии, знаменатель которой причем если их близки, то мало и метод сходится достаточно быстро. Например, в примере 10.1 имеем и поэтому Если же Ащах, то и 1 и следует ожидать медленной сходимости метода наискорейшего спуска.

Пример 10.2. Применение метода наискорейшего спуска для минимизации квадратичной функции при начальном приближении дает последовательность приближений где Траектория спуска изображена на рис. 10.6.

Последовательность сходится здесь со скоростью геометрической прогрессии, знаменатель которой равен т. е. существенно медленнее,

чем в предыдущем примерю. Так как здесь и полученный результат вполне согласуется с оценкой (10.27).

Замечание 1. Мы сформулировали теорему о сходимости метода наискорейшего спуска в случае, когда целевая функция является квадратичной. В общем случае, если минимизируемая функция строго выпуклая и имеет точку минимума х, то также независимо от выбора начального приближения полученная указанным методом последовательность сходится к х при . При этом после попадания в достаточно малую окрестность точки минимума сходимость становится линейной и знаменатель соответствующей геометрической прогрессии оценивается сверху величиной и где и минимальное и максимальное собственные числа матрицы Гессе

Замечание 2. Для квадратичной целевой функции (10.24) решение задачи одномерной минимизации (10.23) удается найти в виде простой явной формулы (10.26). Однако для большинства других нелинейных функций этого сделать нельзя и для вычисления методом наискорейшего спуска приходится применять численные методы одномерной минимизации типа тех, которые были рассмотрены в предыдущей главе.

2. Проблема "оврагов".

Из проведенного выше обсуждения следует, что градиентный метод сходится достаточно быстро, если для минимизируемой функции поверхности уровня близки к сферам (при линии уровня близки к окружностям). Для таких функций и 1. Теорема 10.1, замечание 1, а также результат примера 10.2 указывают на то, что скорость сходимости резко падает при увеличении величины Действительно, известно, что градиентный метод сходится очень медленно, если поверхности уровня минимизируемой функции сильно вытянуты в некоторых направлениях. В двумерном случае рельеф соответствующей поверхности напоминает рельеф местности с оврагом (рис. 10.7). Поэтому такие функции принято называть овражными. Вдоль направлений, характеризующих "дно оврага", овражная функция меняется незначительно, а в других направлениях, характеризующих "склон оврага", происходит резкое изменение функции.

Если начальная точка попадает на "склон оврага", то направление градиентного спуска оказывается почти перпендикулярным "дну оврага" и очередное приближение попадает на противоположный "склон оврага". Следующий шаг в направлении ко "дну оврага" возвращает приближение на первоначальный "склон оврага". В результате вместо того чтобы двигаться вдоль "дна оврага" в направлении к точке минимума, траектория спуска совершает зигзагообразные скачки поперек "оврага", почти не приближаясь к цели (рис. 10.7).

Для ускорения сходимости градиентного метода при минимизации овражных функций разработан ряд специальных "овражных" методов. Дадим представление об одном из простейших приемов. Из двух близких начальных точек совершают градиентный спуск на "дно оврага". Через найденные точки проводят прямую, вдоль которой совершают большой "овражный" шаг (рис. 10.8). Из найденной таким образом точки снова делают один шаг градиентного спуска в точку Затем совершают второй "овражный" шаг вдоль прямой, проходящей через точки . В результате движение вдоль "дна оврага" к точке минимума существенно ускоряется.

Более подробную информацию о проблеме "оврагов" и "овражных" методах можно найти, например, в , .

3. Другие подходы к определению шага спуска.

Как нетрудно понять, на каждой итерации было бы желательно выбирать направление спуска близкое к тому направлению, перемещение вдоль которого приводит из точки в точку х. К сожалению, антиградиент (является, как правило, неудачным направлением спуска. Особенно ярко это проявляется для овражных функций. Поэтому возникает сомнение в целесообразности тщательного поиска решения задачи одномерной минимизации (10.23) и появляется желание сделать в направлении лишь такой шаг, который бы обеспечил "существенное убывание" функции Более того, на практике иногда довольствуются определением значения которое просто обеспечивает уменьшение значения целевой функции.

Метод релаксации

Алгоритм метода заключается в отыскании осевого направления, вдоль которого целевая функция уменьшается наиболее сильно (при поиске минимума). Рассмотрим задачу безусловной оптимизации

Для определения осевого направления в начальной точке поиска из области определяются производные , , по всем независимым переменным. Осевому направлению соответствует наибольшая по модулю производная .

Пусть – осевое направление, т.е. .

Если знак производной отрицательный, функция убывает в направлении оси, если положительный – в обратном направлении:

В точке вычисляют . По направлению убывания функции производится один шаг, определяется и в случае улучшения критерия шаги продолжаются до тех пор, пока не будет найдено минимальное значение по выбранному направлению. В этой точке вновь определяются производные по всем переменным, за исключением тех, по которой осуществляется спуск. Снова находится осевое направление наиболее быстрого убывания , по которому производятся дальнейшие шаги и т.д.

Эту процедуру повторяют до тех пор, пока не достигается оптимальная точка, при движении из которой по любому осевому направлению дальнейшего убывания не происходит. На практике критерием окончания поиска служит условие

которое при превращается в точное условие равенства нулю производных в точке экстремума. Естественно условие (3.7) может быть использовано только в том случае, если оптимум лежит внутри допустимой области изменения независимых переменных . Если же оптимум попадает на границу области , критерий типа (3.7) непригоден и вместо него следует применять положительности всех производных по допустимым осевым направлениям.

Алгоритм спуска для выбранного осевого направления может быть записан так

(3.8)

где -значение варьируемой переменной на каждом шаге спуска;

Величина k+1 шага, которая может изменяться в зависимости от номера шага:

– функция знака z;

Вектор точки, в которой последний раз производилось вычисление производных ;



Знак “+” в алгоритме (3.8) принимается при поиске max I, а знак “-” – при поиске min I.Чем меньше шаг h., тем больше количество вычислений на пути движения к оптимуму. Но при слишком большой величине h вблизи оптимума может возникнуть зацикливание процесса поиска. Вблизи оптимума необходимо, чтобы выполнялось условие h

Простейший алгоритм изменения шага h состоит в следующем. В начале спуска задается шаг , равный например, 10% от диапазона d; изменения с этим шагом производится спуск по выбранному направлению до тез пор, пока выполняется условие для двух последующих вычислений

При нарушении условия на каком-либо шаге направление спуска на оси изменяется на обратное и спуск продолжается из последней точки с уменьшенной вдвое величиной шага.

Формальная запись этого алгоритма следующая:

(3.9)

В результате использования такой стратегии ша спуска будет уменьшатся в районе оптимума по данному направлению и поиск по направлению можно прекратить, когда станет меньше E.

Затем отыскивается новое осевое направление начальный шаг для дальнейшего спуска, обычно меньший пройденного вдоль предыдущего осевого направления. Характер движения в оптимуме в данном методе показан на рисунке 3.4.

Рисунок 3.5 – Траектория движения к оптимуму в методе релаксации

Улучшение алгоритма поиска по данному методу может быть достигнуто путем применения методов однопараметрической оптимизации. При этом может быть предложена схема решения задачи:

Шаг 1. – осевое направление,

; , если ;

Шаг 2. – новое осевое направление;

Метод градиента

В этом методе используется градиент функции . Градиентом функции в точке называется вектор, проекциями которого на координатные оси являются частные производные функции по координатам (рис. 6.5)

Рисунок 3.6 – Градиент функции

.

Направление градиента – это направление наиболее быстрого возрастания функции (наиболее крутого “склона” поверхности отклика). Противоположное ему направление (направление антиградиента) – это направление наибыстрейшего убывания (направление наискорейшего “спуска” величин ).

Проекция градиента на плоскость переменных перпендикулярна касательной к линии уровня , т.е. градиент ортогонален к линиям постоянного уровня целевой функции (рис. 3.6).

Рисунок 3.7 – Траектория движения к оптимуму в методе

градиента

В отличие от метода релаксации в методе градиента шаги совершаются в направлении наибыстрейшего уменьшения (увеличения) функции .

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем переменным , которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении градиента при поиске максимума или в противоположном направлении – при поиске минимума.

Если аналитическое выражение неизвестно, то направление градиента определяется поиском на объекте пробных движений. Пусть начальная точка. Дается приращение величина , при этом . Определяют приращение и производную

Аналогично определяют производные по остальным переменным. После нахождения составляющих градиента пробные движения прекращаются и начинаются рабочие шаги по выбранному направлению. Причем величина шага тем больше, чем больше абсолютная величина вектора .

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение, пропорциональное соответствующей составляющей градиента

, (3.10)

или в векторной форме

, (3.11)

где – положительная константа;

“+” – при поиске max I;

“-” – при поиске min I.

Алгоритм градиентного поиска при нормировании градиента (деление на модуль) применяется в виде

; (3.12)

(3.13)

Определяет величину шага по направлению градиента.

Алгоритм (3.10) обладает тем достоинством, что при приближении к оптимуму длина шага автоматически уменьшается. А при алгоритме (3.12) стратегию изменения можно строить независимо от абсолютной величины коэффициента.

В методе градиента каждый разделяется один рабочий шаг, после которого вновь вычисляются производные, определяется новое направление градиента и процесс поиска продолжается (рис. 3.5).

Если размер шага выбран слишком малым, то движение к оптимуму будет слишком долгим из-за необходимости вычисления в очень многих точках. Если же шаг выбран слишком большим, в район оптимума может возникнуть зацикливание.

Процесс поиска продолжается до тех пор, пока , , не станут близки к нулю или пока не будет достигнута граница области задания переменных.

В алгоритме с автоматическим уточнением шага величину уточняют так, чтобы изменение направления градиента в соседних точках и

Критерии окончания поиска оптимума:

; (3.16)

; (3.17)

где – норма вектора.

Поиск завершается при выполнении одного из условий (3.14) – (3.17).

Недостатком градиентного поиска (так же и рассмотренных выше методов) является то, что при его использовании можно обнаружить только локальный экстремум функции . Для отыскания других локальных экстремумов необходимо производить поиск из других начальных точек.

Градиентные методы

Градиентные методы безусловной оптимизации используют только первые производные целевой функции и являются методами линейной аппроксимации на каждом шаге, т.е. целевая функция на каждом шаге заменяется касательной гиперплоскостью к ее графику в текущей точке.

На k-м этапе градиентных методов переход из точки Xk в точку Xk+1 описывается соотношением:

где k - величина шага, k - вектор в направлении Xk+1-Xk.

Методы наискорейшего спуска

Впервые такой метод рассмотрел и применил еще О. Коши в XVIII в. Идея его проста: градиент целевой функции f(X) в любой точке есть вектор в направлении наибольшего возрастания значения функции. Следовательно, антиградиент будет направлен в сторону наибольшего убывания функции и является направлением наискорейшего спуска. Антиградиент (и градиент) ортогонален поверхности уровня f(X) в точке X. Если в (1.2) ввести направление

то это будет направление наискорейшего спуска в точке Xk.

Получаем формулу перехода из Xk в Xk+1:

Антиградиент дает только направление спуска, но не величину шага. В общем случае один шаг не дает точку минимума, поэтому процедура спуска должна применяться несколько раз. В точке минимума все компоненты градиента равны нулю.

Все градиентные методы используют изложенную идею и отличаются друг от друга техническими деталями: вычисление производных по аналитической формуле или конечно-разностной аппроксимации; величина шага может быть постоянной, меняться по каким-либо правилам или выбираться после применения методов одномерной оптимизации в направлении антиградиента и т.д. и т.п.

Останавливаться подробно мы не будем, т.к. метод наискорейшего спуска не рекомендуется обычно в качестве серьезной оптимизационной процедуры.

Одним из недостатков этого метода является то, что он сходится к любой стационарной точке, в том числе и седловой, которая не может быть решением.

Но самое главное - очень медленная сходимость наискорейшего спуска в общем случае. Дело в том, что спуск является "наискорейшим" в локальном смысле. Если гиперпространство поиска сильно вытянуто ("овраг"), то антиградиент направлен почти ортогонально дну "оврага", т.е. наилучшему направлению достижения минимума. В этом смысле прямой перевод английского термина "steepest descent", т.е. спуск по наиболее крутому склону более соответствует положению дел, чем термин "наискорейший", принятый в русскоязычной специальной литературе. Одним из выходов в этой ситуации является использование информации даваемой вторыми частными производными. Другой выход - изменение масштабов переменных.

линейный аппроксимация производная градиент

Метод сопряженного градиента Флетчера-Ривса

В методе сопряженного градиента строится последовательность направлений поиска, являющихся линейными комбинациями, текущего направления наискорейшего спуска, и, предыдущих направлений поиска, т.е.

причем коэффициенты выбираются так, чтобы сделать направления поиска сопряженными. Доказано, что

и это очень ценный результат, позволяющий строить быстрый и эффективный алгоритм оптимизации.

Алгоритм Флетчера-Ривса

1. В X0 вычисляется.

2. На k-ом шаге с помощь одномерного поиска в направлении находится минимум f(X), который и определяет точку Xk+1.

  • 3. Вычисляются f(Xk+1) и.
  • 4. Направление определяется из соотношения:
  • 5. После (n+1)-й итерации (т.е. при k=n) производится рестарт: полагается X0=Xn+1 и осуществляется переход к шагу 1.
  • 6. Алгоритм останавливается, когда

где - произвольная константа.

Преимуществом алгоритма Флетчера-Ривса является то, что он не требует обращения матрицы и экономит память ЭВМ, так как ему не нужны матрицы, используемые в Ньютоновских методах, но в то же время почти столь же эффективен как квази-Ньютоновские алгоритмы. Т.к. направления поиска взаимно сопряжены, то квадратичная функция будет минимизирована не более, чем за n шагов. В общем случае используется рестарт, который позволяет получать результат.

Алгоритм Флетчера-Ривса чувствителен к точности одномерного поиска, поэтому при его использовании необходимо устранять любые ошибки округления, которые могут возникнуть. Кроме того, алгоритм может отказать в ситуациях, где Гессиан становится плохо обусловленным. Гарантии сходимости всегда и везде у алгоритма нет, хотя практика показывает, что почти всегда алгоритм дает результат.

Ньютоновские методы

Направление поиска, соответствующее наискорейшему спуску, связано с линейной аппроксимацией целевой функции. Методы, использующие вторые производные, возникли из квадратичной аппроксимации целевой функции, т. е. при разложении функции в ряд Тейлора отбрасываются члены третьего и более высоких порядков.

где - матрица Гессе.

Минимум правой части (если он существует) достигается там же, где и минимум квадратичной формы. Запишем формулу для определения направления поиска:

Минимум достигается при

Алгоритм оптимизации, в котором направление поиска определяется из этого соотношения, называется методом Ньютона, а направление - ньютоновским направлением.

В задачах поиска минимума произвольной квадратичной функции с положительной матрицей вторых производных метод Ньютона дает решение за одну итерацию независимо от выбора начальной точки.

Классификация Ньютоновских методов

Собственно метод Ньютона состоит в однократном применении Ньютоновского направления для оптимизации квадратичной функции. Если же функция не является квадратичной, то верна следующая теорема.

Теорема 1.4. Если матрица Гессе нелинейной функции f общего вида в точке минимума X* положительно определена, начальная точка выбрана достаточно близко к X* и длины шагов подобраны верно, то метод Ньютона сходится к X* с квадратичной скоростью.

Метод Ньютона считается эталонным, с ним сравнивают все разрабатываемые оптимизационные процедуры. Однако метод Ньютона работоспособен только при положительно определенной и хорошо обусловленной матрицей Гессе (определитель ее должен быть существенно больше нуля, точнее отношение наибольшего и наименьшего собственных чисел должно быть близко к единице). Для устранения этого недостатка используют модифицированные методы Ньютона, использующие ньютоновские направления по мере возможности и уклоняющиеся от них только тогда, когда это необходимо.

Общий принцип модификаций метода Ньютона состоит в следующем: на каждой итерации сначала строится некоторая "связанная" с положительно определенная матрица, а затем вычисляется по формуле

Так как положительно определена, то - обязательно будет направлением спуска. Процедуру построения организуют так, чтобы она совпадала с матрицей Гессе, если она является положительно определенной. Эти процедуры строятся на основе некоторых матричных разложений.

Другая группа методов, практически не уступающих по быстродействию методу Ньютона, основана на аппроксимации матрицы Гессе с помощью конечных разностей, т.к. не обязательно для оптимизации использовать точные значения производных. Эти методы полезны, когда аналитическое вычисление производных затруднительно или просто невозможно. Такие методы называются дискретными методами Ньютона.

Залогом эффективности методов ньютоновского типа является учет информации о кривизне минимизируемой функции, содержащейся в матрице Гессе и позволяющей строить локально точные квадратичные модели целевой функции. Но ведь возможно информацию о кривизне функции собирать и накапливать на основе наблюдения за изменением градиента во время итераций спуска.

Соответствующие методы, опирающиеся на возможность аппроксимации кривизны нелинейной функции без явного формирования ее матрицы Гессе, называют квази-Ньютоновскими методами.

Отметим, что при построении оптимизационной процедуры ньютоновского типа (в том числе и квази-Ньютоновской) необходимо учитывать возможность появления седловой точки. В этом случае вектор наилучшего направления поиска будет все время направлен к седловой точке, вместо того, чтобы уходить от нее в направлении "вниз".

Метод Ньютона-Рафсона

Данный метод состоит в многократном использовании Ньютоновского направления при оптимизации функций, не являющихся квадратичными.

Основная итерационная формула многомерной оптимизации

используется в этом методе при выборе направления оптимизации из соотношения

Реальная длина шага скрыта в ненормализованном Ньютоновском направлении.

Так как этот метод не требует значения целевой функции в текущей точке, то его иногда называют непрямым или аналитическим методом оптимизации. Его способность определять минимум квадратичной функции за одно вычисление выглядит на первый взгляд исключительно привлекательно. Однако это "одно вычисление" требует значительных затрат. Прежде всего, необходимо вычислить n частных производных первого порядка и n(n+1)/2 - второго. Кроме того, матрица Гессе должна быть инвертирована. Это требует уже порядка n3 вычислительных операций. С теми же самыми затратами методы сопряженных направлений или методы сопряженного градиента могут сделать порядка n шагов, т.е. достичь практически того же результата. Таким образом, итерация метода Ньютона-Рафсона не дает преимуществ в случае квадратичной функции.

Если же функция не квадратична, то

  • - начальное направление уже, вообще говоря, не указывает действительную точку минимума, а значит, итерации должны повторяться неоднократно;
  • - шаг единичной длины может привести в точку с худшим значением целевой функции, а поиск может выдать неправильное направление, если, например, гессиан не является положительно определенным;
  • - гессиан может стать плохо обусловленным, что сделает невозможным его инвертирование, т.е. определение направления для следующей итерации.

Сама по себе стратегия не различает, к какой именно стационарной точке (минимума, максимума, седловой) приближается поиск, а вычисления значений целевой функции, по которым можно было бы отследить, не возрастает ли функция, не делаются. Значит, все зависит от того, в зоне притяжения какой стационарной точки оказывается стартовая точка поиска. Стратегия Ньютона-Рафсона редко используется сама по себе без модификации того или иного рода.

Методы Пирсона

Пирсон предложил несколько методов с аппроксимацией обратного гессиана без явного вычисления вторых производных, т.е. путем наблюдений за изменениями направления антиградиента. При этом получаются сопряженные направления. Эти алгоритмы отличаются только деталями. Приведем те из них, которые получили наиболее широкое распространение в прикладных областях.

Алгоритм Пирсона № 2.

В этом алгоритме обратный гессиан аппроксимируется матрицей Hk, вычисляемой на каждом шаге по формуле

В качестве начальной матрицы H0 выбирается произвольная положительно определенная симметрическая матрица.

Данный алгоритм Пирсона часто приводит к ситуациям, когда матрица Hk становится плохо обусловленной, а именно - она начинает осцилировать, колеблясь между положительно определенной и не положительно определенной, при этом определитель матрицы близок к нулю. Для избежания этой ситуации необходимо через каждые n шагов перезадавать матрицу, приравнивая ее к H0.

Алгоритм Пирсона № 3.

В этом алгоритме матрица Hk+1 определяется из формулы

Hk+1 = Hk +

Траектория спуска, порождаемая алгоритмом, аналогична поведению алгоритма Дэвидона-Флетчера-Пауэлла, но шаги немного короче. Пирсон также предложил разновидность этого алгоритма с циклическим перезаданием матрицы.

Проективный алгоритм Ньютона-Рафсона

Пирсон предложил идею алгоритма, в котором матрица рассчитывается из соотношения

H0=R0, где матрица R0 такая же как и начальные матрицы в предыдущих алгоритмах.

Когда k кратно числу независимых переменных n, матрица Hk заменяется на матрицу Rk+1, вычисляемую как сумма

Величина Hk(f(Xk+1) - f(Xk)) является проекцией вектора приращения градиента (f(Xk+1)-f(Xk)), ортогональной ко всем векторам приращения градиента на предыдущих шагах. После каждых n шагов Rk является аппроксимацией обратного гессиана H-1(Xk), так что в сущности осуществляется (приближенно) поиск Ньютона.

Метод Дэвидона-Флетчера-Пауэла

Этот метод имеет и другие названия - метод переменной метрики, квазиньютоновский метод, т.к. он использует оба эти подхода.

Метод Дэвидона-Флетчера-Пауэла (ДФП) основан на использовании ньютоновских направлений, но не требует вычисления обратного гессиана на каждом шаге.

Направление поиска на шаге k является направлением

где Hi - положительно определенная симметричная матрица, которая обновляется на каждом шаге и в пределе становится равной обратному гессиану. В качестве начальной матрицы H обычно выбирают единичную. Итерационная процедура ДФП может быть представлена следующим образом:

  • 1. На шаге k имеются точка Xk и положительно определенная матрица Hk.
  • 2. В качестве нового направления поиска выбирается

3. Одномерным поиском (обычно кубической интерполяцией) вдоль направления определяется k, минимизирующее функцию.

4. Полагается.

5. Полагается.

6. Определяется и. Если Vk или достаточно малы, процедура завершается.

  • 7. Полагается Uk = f(Xk+1) - f(Xk).
  • 8. Матрица Hk обновляется по формуле

9. Увеличить k на единицу и вернуться на шаг 2.

Метод эффективен на практике, если ошибка вычислений градиента невелика и матрица Hk не становится плохо обусловленной.

Матрица Ak обеспечивает сходимость Hk к G-1, матрица Bk обеспечивает положительную определенность Hk+1 на всех этапах и в пределе исключает H0.

В случае квадратичной функции

т.е. алгоритм ДФП использует сопряженные направления.

Таким образом, метод ДФП использует как идеи ньютоновского подхода, так и свойства сопряженных направлений, и при минимизации квадратичной функции сходится не более чем за n итераций. Если оптимизируемая функция имеет вид, близкий к квадратичной функции, то метод ДФП эффективен за счет хорошей аппроксимации G-1(метод Ньютона). Если же целевая функция имеет общий вид, то метод ДФП эффективен за счет использования сопряженных направлений.



Понравилась статья? Поделиться с друзьями: