Химические свойства углеводородов кратко. Свойства углеводородов

Алкены.

Алкены.

Простейший непредельный углеводород с двойной связью – этилен С 2 Н 4 .

Этилен является родоначальником ряда алкенов. Состав любого углеводорода этого ряда выражает общая формула С n Н 2n (где n – число атомов углерода).

C 2 H 4 - Этилен,

C 3 H 6 - Пропилен,

C 4 H 8 - Бутилен,

C 5 H 10 - Амилен,

C 6 H 12 - Гексилен

. . . . . . . . . . . . . .

C 10 H 20 - Децилен и т.д.

Или в структурном виде:

Как видно из структурных схем, помимо двойной связи, молекулы алкенов могут содержать простые связи.

Алкины.

Алкины (иначе ацетиленовые углеводороды) - углеводороды, содержащие тройную связь между атомами углерода.

Родоначальником ряда алкинов является этин (или ацетилен) С 2 Н 2 .

Алкины образуют гомологический ряд с общей формулой CnH2n-2 .

Названия алкинов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ин»; положение тройной связи указывается арабскими цифрами.

Гомологический ряд алкинов:

Этин - C 2 H 2 ,
Пропин - C 3 H 4 ,
Бутин - C 4 H 6 ,
Пентин - C 5 H 8 и пр.

В природе алкины практически не встречаются. Ацетилен обнаружен в атмосфере Урана, Юпитера и Сатурна.

Алкины обладают слабым наркозным действием. Жидкие алкины вызывают судороги.

Алкадиены.

Алкадиены (или просто диены ) - это непредельные углеводороды, молекулы которых, содежат две двойных связи.

Общая формула алкадиенов С n Н 2n-2 (формула совпадает с формулой ряда алкинов).

В зависимости от взаимного расположения двойных связей диены подразделяются на три группы:

· Алкадиены с кумулированными двойными связями (1,2-диены) .
Это алкадиены, в молекулах которых двойные связи не разделены одинарными. Такие алкадиены называют аленами по названию первого члена их ряда.

· Сопряженные алкадиены (1,3-диены) .
В молекулах сопряжённых алкадиенов двойные связи разделены одной одинарной.

· Изолированные алкадиены
В молекулах изолированных алкадиенов, двойные связи разделены несколькими одинарными (двумя и более).

Эти три вида алкадиенов существенно отличаются друг от друга по строению и свойствам.

Важнейшие представители сопряженных диенов бутадиен 1,3 и изопрен .

Молекула изопрена лежит в основе строения многих веществ растительного происхождения: натурального каучука, эфирных масел, растительных пигментов (каротиноидов) и пр.

Свойства непредельных углеводородов.

По химическим свойствам непредельные углеводороды резко отличаются от предельных. Они исключительно реакционноспособны и вступают в разнообразные реакции присоединения. Такие реакции происходят путём присоединения атомов или групп атомов к атомам углерода, связанным двойной или тройной связью. При этом кратные связи довольно легко разрываются и превращаются в простые.

Важным свойством непредельных углеводородов является способность их молекул соединяться друг с другом или с молекулами других непредельных углеводородов. В результате таких процессов образуются полимеры.

8 Механизмы реакций электрофильного и радикального присоединения не в придельных алифатических у/в

9 Особенности строения алкинов

Алки́ны (иначе ацетиленовые углеводороды ) - углеводороды, содержащие тройную связь между атомамиуглерода, образующие гомологический ряд с общей формулой C n H 2n-2 . Атомы углерода при тройной связи находятся в состоянии sp-гибридизации
Для алкинов характерны реакции присоединения. В отличие от алкенов, которым свойственны реакции электрофильного присоединения, алкины могут вступать также и в реакции нуклеофильного присоединения. Это обусловлено значительным s-характером связи и, как следствие, повышенной электроотрицательностью атома углерода. Кроме того, большая подвижность атома водорода при тройной связи обуславливает кислотные свойства алкинов в реакциях замещения.

10 Механизм реакции нуклеофильного присоединения в алкинах

Алкинами, ацетиленовыми углеводородами называют углеводороды, в состав молекул которых входят как минимум два углеродных атома, находящиеся в состоянии sp-гибридизации и соединенные друг с другом тремя связями.

Алкины образуют гомологический ряд с общей формулой С n Н 2n-2.

Первым членом гомологического ряда является ацетилен имеющий молекулярную формулу С 2 Н 2 и структурную формулу СНºСН. В силу особенности sp-гибридизации молекула ацетилен имеет линейное строение. Наличие двух π-связей расположенных в двух взаимно перпендикулярных плоскостях предполагает расположение α-атомов замещающих групп на линии пересечения плоскостей, в которых расположены π-связи. Поэтому связи атомов углерода, затраченные на соединение с другими атомами или группами жестко расположены на линии под углом 180 0 друг к другу. Строение системы тройной связи в молекулах алкинов определят их линейное строение.

Особенность строения молекул алкинов предполагает существование изомерии положения тройной связи. Структурная изомерия, обусловленная строением углеродного скелета, начинается с пятого члена гомологического ряда.

1. Изомерия положения тройной связи. Например:

2. Структурные изомеры. Например:

Первый член гомологического ряда носит тривиальное название «ацетилен».

По рациональной номенклатуре ацетиленовые углеводороды рассматриваются как производные ацетилена, Например:

По номенклатуре ИЮПАК названия алкинов образуются заменой суффикса «ан» на «ин». Главную цепь выбирают таким образом, чтобы в нее попала тройная связь. Нумерацию углеродных атомов начинают с того конца цепи, к которому ближе тройная связь. При наличии в молекуле двойной и тройной связей двойная связь имеет меньший номер. Например:

Тройная связь может быть концевой (терминальной, например, в пропине) или «внутренней», например в 4-метил-2-пентине.

При составлении названий радикал -СºСН называют «этинил».

Способы получения.

2.1 Промышленные способы .

В промышленных условиях получают главным образом ацетилен. Существуют два способа получения ацетилена.

Карбидный способ получения ацетилена

Ацетилен впервые карбидным способом был получен Фридрихом Велером в 1862г. Появление карбидного способа положило начало широкому применению ацетилена, в том числе и в качестве сырья в органическом синтезе. До настоящего времени карбидный способ является одним из основных промышленных источников ацетилена. Способ включает две реакции:

Пиролиз этилена и метана

Пиролиз этилена и метана при очень высокой температуре ведет к получению ацетилена. В этих условиях ацетилен термодинамически нестабилен, поэтому пиролиз проводят за очень короткие интервалы времени (сотые секунды):

Термодинамическая нестабильность ацетилена (взрывается даже при сжатии) следует из высокого положительного значения теплоты его образования из элементов:

Это свойство создает определенные трудности при хранении ацетилена и работе с ним. Для обеспечения безопасности и упрощения работы с ацетиленом используют его свойство легко сжижаться. Сжиженный ацетилен растворяют в ацетоне. Раствор ацетилена в ацетоне хранят в баллонах, наполненных пемзой или активированным углем. Такие условия хранения предотвращают возможности произвольного взрыва.

Лабораторные методы

В лабораторных условиях ацетиленовые углеводороды получают также двумя путями:

1. Алкилирование ацетилена.

2. отщепление галогенводородов от поли (много)галогенпроизводных алканов.

Дегидрогалогенирование дигалогенидов и галогеналкенов.

Обычно используют геминальные из карбонильных соединений (1) и вицинальные дигалогениды, которые получаются из алкенов (2). Например:

В присутствии спиртовой щелочи реакция дегидрогалогенирования идет в две стадии:

При умеренных температурах (70-80 0 С) реакция останавливается на стадии получения винилгалогенида. Если реакция протекает в жестких условиях (150-200 0 С), то конечным продуктом является алкин.

Физические свойства.

Физические свойства алкинов соответствуют физическим свойствам алкенов. Следует отметить, что алкины обладают более высокими температурами плавления и кипения. Терминальные алкины имеют более низкие температуры плавления и кипения, чем внутренние.

Химические свойства.

Галогенирование

Электрофильное присоединение (Ad E) галогенов: хлора, брома йода к ацетиленам идет с меньшей скоростью, чем к олефинам. При этом образуютсятранс -дигалогеналкены. Дальнейшее присоединение галогенов идет с еще более низкой скоростью:

Например, присоединение брома к этилену с образованием 1,1,2,2-тетрабромэтана в среде уксусной кислоты:
Механизм реакции присоединения брома к ацетилену:

1. Образование π-комплекса:

2. Скоростьлимитирующая стадия образования циклического бромирениевого катиона:

3. Присоединение бромид-иона к циклическому бромирениевому катиону:

Гидрогалогенирование

Алкины реагируют с хлористым водородом и бромистым водородом подобно алкенам. Галогенводороды присоединяются к ацетиленовым углеводородам в две стадии по правилу Марковникова:

В таких реакциях скорость 100-1000 раз ниже, чем в реакциях с участием алкенов. Соответственно процесс может быть остановлен на стадии монобромида. Введение атома галоида снижает реакционную способность двойной связи.

Механизм реакции гидрогалогенирования можно представить схемой:

1. На первой стадии образуется π-комплекс:

2. Образование промежуточного карбкатиона. Эта стадия является медленной (скоростьлимитирующей):

На этой стадии один из атомов углерода двойной связи переходит в состояние sp 2 -гибридизации. Другой остается в состоянии sp-гибридизации и приобретает вакантную р-орбиталь.

3. На третьей стадии бромид-ион, образовавшийся на второй стадии, быстро присоединяется к карбкатиону:

Взаимодействие образовавшегося бромалкена со второй молекулой бромистого водорода идет по обычному для алкенов механизму.

В присутствии пероксидов наблюдается перекисный эффект Караша. Реакция идет по радикальному механизму. Вследствие чего бромоводород присоединяется к алкину против правила Марковникова:

Гидратация (или реакция Кучерова)

Алкины присоединяют воду в присутствии сульфата ртути (II). При этом из ацетилена получается уксусный альдегид:

Ненасыщенный радикал СН 2 =СН- называется винил. Реакция гидратации ацетилена протекает через стадию ненасыщенного винилового спирта или енола, в котором гидроксигруппа связана с атомом углерода в состоянии sp 2 -гибридизации. По правилу Эльтекова подобная структура является неустойчивой и изомеризуется карбонильное соединение.

Енол и карбонильное соединение находятся в равновесии. Взаимопревращение енола и карбонильного соединения является примером так называемой кето-енольной таутомерии или кето-енольного таутомерного равновесия. Участники этого равновесия различаются положением атома водорода и кратной связи.

К гомологам ацетилена вода присоединяется по правилу Марковникова. Продуктами гидратации гомологов ацетилена являются кетоны:

Винилирование.

Реакция образование виниловых эфиров из ацетилена и спиртов является примером так называемых реакций вининилирования. К числу этих реакций относятся:

1. Присоединение к ацетилену хлористого водорода:

2. Присоединение к ацетилену синильной кислоты в присутствии солей меди:

3. Присоединение к ацетилену уксусной кислоты в присутствии фосфорной кислоты:

Гидрирование

В условиях гетерогенного катализа алкины присоединяют водород аналогично алкенам:

Первая стадия гидрирования более экзотермична (протекает с большим выделением тепла), чем вторая, что обусловлено большим запасом энергии в ацетилене, чем в этилене:

В качестве гетерогенных катализаторов, как и при гидрировании алкенов, используют платину, палладий, никель. Причем гидрирование алкена протекает значительно быстрее, чем гидрирование алкина. Чтобы замедлить процесс гидрирования алкена применяют так назывваемые «отравленные» катализаторы. Замедление скорости гидрирования алкена достигается за счет добавки оксида или ацетата свинца к палладию. Гидрирование на палладие с добавкой солей свинца приводит к образованиюцис -олефина. Гидрирование действием металлического натрия в жидком аммиаке приводит к образованиютранс- олефина.

Окисление.

Алкины подобно алкенам окисляются по месту тройной связи. Окисление идет в жестких условиях с полным разрывом тройной связи и образованием карбоновых кислот. Аналогично исчерпывающему окислению олефинов. В качестве окислителей применяют перманганат калия при нагревании или озон:

Следует отметить, что при окислении терминальных алкенов и алкинов одним из продуктов окисления является углекислый газ. Его выделение можно наблюдать визуально и тем самым можно отличить терминальные от внутренних ненасыщенных соединений. При окислении последних выделение углекислого газа не будет наблюдаться.

Полимеризация.

Ацетиленовые углеводороды способны к полимеризации в нескольких направлениях:

1. Циклотримеризация ацетиленовых углеводородов, с использованием активированного угля (по Зелинскому ) или комплексного катализатора из дикарбонила никеля и фосфорорганического соединения (по Реппе ). В частности из ацетилена получается бензол:

В присутствии цианида никеля ацетилен претерпевает циклотетрамеризацию:

В присутствии солей меди происходит линейная олигомеризация ацетилена с образованием винилацетилена и дивинилацетилена:

Кроме всего того, алкины способны к полимеризации с образованием сопряженных полиенов:

Реакции замещения.

Металлирование

При действии очень сильных оснований алкины, имеющие концевую тройную связь, полностью ионизируются и образуют соли, которые называются ацетиленидами. Ацетилен реагирует как более сильная кислота и вытесняет более слабую кислоту из ее соли:

Ацетилениды тяжелых металлов, в частности меди серебра, ртути, являются взрывчатыми веществами.

Алкинид-анионы (или ионы), входящие в состав ацетиленидов являются сильными нуклеофилами. Это свойство нашло применение в органическом синтезе для получения гомологов ацетилена с использованием галогеналкилов:

Кроме ацетилена подобное превращение можно провести для других алкинов, имеющих концевую тройную связь.

Гомологи ацетилена или терминальных алкинов можно получить другим путем. С использованием так называемого реактива Иоцича. Реактив Иоцича получают изреактива Гриньяра :

Полученный реактив Иоцича в среде высокополярных апротонных растворителей или в жидком аммиаке взаимодействует с другим галоидным алкилом:

Таблица 2

Сравнение основности полиметилбензолов (по данным табл.1) и устойчивости -комплексов с относительными скоростями их бромирования (Br 2 в 85% уксусной кислоте) и хлорирования (Cl 2 в уксусной кислоте) при 25 о С. В качестве стандартного соединения взят бензол.

lg(К арен /К бензол)
Заместители в бензольном кольце Относительная устойчивость -комплексов с HCl ( pK ) Относительная основность аренов pK а (табл. 1) для реакции с бромом для реакции с хлором
нет
CH 3 0.18 2.9 2.78 -
1,2-(CH 3) 2 0.26 3.9 3.72 3.62
1,3-(CH 3) 2 0.31 6.0 5.71 5.6
1,4-(CH 3) 2 0.22 3.5 3.4 3.3
1,2,3-(CH 3) 3 0.38 6.4 6.22 5.9
1,2,4-(CH 3) 3 0.35 6.3 6.18 5.84
1,3,5-(CH 3) 3 0.42 8.8 8.28 -
1,2,3,4-(CH 3) 4 0.43 7.3 7.04 -
1,2,3,5-(CH 3) 4 - 9.3 8.62 8.68
1,2,4,5-(CH 3) 4 - 7.0 6.45 -
(CH 3) 5 0.44 9.6 8.91 8.86

Данные табл.2 показывают, что скорости реакций бромирования и хлорирования при введении метильных групп увеличиваются почти в той же степени, в которой происходит возрастание основности арена (рис.2). Это означает, что -комплекс является хорошей моделью переходного состояния для рассматриваемых реакций.

В то же время, устойчивость -комплексов аренов с HCl очень мало зависит от числа метильных заместителей, тогда как скорость хлорирования и бромирования увеличивается в 10 8 раз. Следовательно, -комплекс не может служить моделью переходного состояния в этих реакциях.

14 Заместители 1 и 2 рода
риентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: -F (+M<–I), -Cl (+M<–I), -Br (+M<–I).
Являясь орто-пара-ориентантами, они замедляют электрофильное замещение. Причина - сильный –I-эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета-ориентанты) направляют последующее замещение преимущественно в мета-положение.
К ним относятся электроноакцепторные группы:

NO2 (–M, –I); -COOH (–M, –I); -CH=O (–M, –I); -SO3H (–I); -NH3+ (–I); -CCl3 (–I).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто- и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета-положении, где электронная плотность несколько выше.
Пример:

Ориентант 2-го рода

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C6H5CH3 > бензол C6H6 > нитробензол C6H5NO2.

первого рода- OH, OR, OCOR, SH, SR, NH2, NHR, NR2, АЛКИЛЫ, ГАЛОГЕНЫ. второго рода- SO3H, NO2, COOH, COOR, CN, CF3, NR3, CHO. где R- скорей всего радикал

15 Правила ориентации в бензольном кольце, в многоядерных ароматических системах
Важнейшим фактором, определяющим химические свойства молекулы, является распределение в ней электронной плотности. Характер распределения зависит от взаимного влияния атомов.

В молекулах, имеющих только s-связи, взаимное влияние атомов осуществляется через индуктивный эффект. В молекулах, представляющих собой сопряженные системы, прояв­ляется действие мезомерного эффекта.

Влияние заместителей, передающееся по сопряженной си­стеме p-связей, называется мезомерным (М) эффектом.

В молекуле бензола p-электронное облако распределено рав­номерно по всем атомам углерода за счет сопряжения. Если же в бензольное кольцо ввести какой-нибудь заместитель, это равно­мерное распределение нарушается, и происходит перераспреде­ление электронной плотности в кольце. Место вступления второ­го заместителя в бензольное кольцо определяется природой уже имеющегося заместителя.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного):электронодонорные и электроноакцепторные.

Электронодонорные заместители проявляют +М и +I-эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа -NH 2 . Не­поделенная пара электронов в этих группах вступает в общее со­пряжение с p-электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредотачивается в орто- и пара-положениях.

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p-электронной плотности.

Электроноакцепторные заместители проявляют -М-эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогруппа -NO 2 , сульфогруппа -SO 3 H, альдегидная -СНО и карбоксильная -СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в метаположениях:

Полностью галогенированные алкильные радикалы (напри­мер. - ССl 3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Закономерности преимущественного направления замещения в бензольном кольце называют правилами ориентации.

Заместители, обладающие +I-эффектом или +M-эффектом, способствуют электрофильному замещению в орто- и пара-положения бензольного кольца и называются заместителями (орнентаптами) первого рода.

СН 3 -ОН -NH 2 -CI (-F,-Вr,-I)
+I +M,-I +M,-I +М,-I

Заместители, обладающие -I-эффектом или - M-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (орнентаптами) второго рода:

S0 3 H -ССl 3 -М0 2 -СООН -СН=О
- М -I -М,-I -М -М

Например, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и ортоположения:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

Помимо ориентирующего действия, заместители оказывают влияние и на реакционную способность бензольного кольца: ориентанты 1-го рода (кроме галогенов) облегчают вступление второго заместителя; ориентанты 2-го рода (и галогены) затрудняют его.

Применение. Ароматические углеводороды - важнейшее сырье для синтеза ценных веществ. Из бензола получают фенол, анилин, стирол, из которых, в свою очередь, получают фенол-формальдегидные смолы, красители, полистирол и многие другие важные продукты.

16 Номенклатура, изомерия, строения спиртов, фенолов
Галогенопроизводные углеводородов являются продуктами замещения атомов водорода в углеводородах на атомы галогенов: фтора, хлора, брома или йода. 1. Строение и классификация галогенопроизводных Атомы галогенов связаны с атомом углерода одинарной связью. Как и другие органические соединения, строение галогенопроизводных может быть выражено несколькими структурными формулами,: бромэтан (этилбромид) Классифицировать галогенопроизводные можно несколькими способами: 1) в соответствии с общей классификацией углеводородов (т.е. алифатические, алициклические, ароматические, предельные или непредельные галогенопроизводные) 2) по количеству и качеству атомов галогенов 3) по типу атома углерода, к которому присоединён атом галогена: первичные, вторичные, третичные галогенопроизводные. 2. Номенклатура По номенклатуре ИЮПАК положение и название галогена указывается в приставке. Нумерация начинается с того конца молекулы, к которому ближе расположен атом галогена. Если присутствует двойная или тройная связь, то именно она определяет начало нумерации, а не атом галогена: 3-бромпропен 3-метил-1-хлорбутан 3. Изомерия Cтруктурная изомерия: Изомерия положения заместителей 2-бромбутан 1-бромбутан Изомерия углеродного скелета 1-хлорбутан 2-метил-1-хлорпропан Пространственная изомерия:Стереоизомерия может проявляться при наличии четырёх разных заместителей у одного атома углерода (энантиомерия) или при наличии разных заместителей при двойной связи, например: транс-1,2-дихлорэтен цис-1,2-дихлорэтен 17.вопрос:Галогенопроизводные углеводородов:физические и химические свойства.механизмы реакций нуклеофильного замещения (sn1 и sn2) и элиминирования (Е1 и Е2)Фреоны:строение свойство и приминение. Физические и биологические свойства Температуры плавления и кипения повышаются в ряду: R-Cl, R-Br, R-I, а также при увеличении количества атомов углерода в радикале: Зависимость температуры кипения алкилгалогенидов от количества атомов углерода в цепи для хлор-, бром-, йодалканов Галогенопроизводные являются гидрофобными веществами: они плохо растворяются в воде и хорошо растворяются в неполярных гидрофобных растворителях. Многие галогенопроизводные используются как хорошие растворители. Например, хлористый метилен (CH2Cl2), хлороформ (CHCl3), четырёххлористый углерод (CCl4) используются для растворения масел, жиров, эфирных масел. Химические свойства Реакции нуклеофильного замещенияАтомы галогенов довольно подвижны и могут замещаться под действием разнообразных нуклеофилов, что используется для синтеза разнообразных производных: Механизм реакций нуклеофильного замещенияВ случае вторичных и первичных алкилгалогенидов, как правило, реакция идёт как бимолекулярное нуклеофильное замещение SN2: SN2 реакции являются синхронными процессами – нуклеофил (в данном случае OH-) атакует атом углерода, постепенно образуя с ним связь; одновременно с этим постепенно разрывается связь С-Br. Уходящий из молекулы субстрата бромид-ион в называется уходящей группой или нуклеофугом.В случае SN2 реакций скорость реакции зависит от концентрации и нуклеофила, и субстрата: v = k [S] v – скорость реакции, k- константа скорости реакции [S] – концентрация субстрата (т.е. в данном случае алкилгалогенида – концентрация нуклеофила В случае третичных алкилгалогенидов нуклеофильное замещение идёт по механизму мономолекулярного нуклеофильного замещения SN1: трет-бутанол трет-бутилхлорид В случае SN1 реакций скорость реакции зависит от концентрации субстрата и не зависит от концентрации нуклеофила: v = k [S] .По таким же механизмам идут реакции нуклеофильного замещения и в случае спиртов и во многих других случаях. Элиминирование галогеноводородов может осуществляться по 3 основным механизмам: E1, E2 и E1cb. Алкилгалогенид диссоциирует с образованием карбокатиона и галогенид-иона. Основание (B:) отрывает от образующегося карбокатиона протон с образованием продукта – алкена: Механизм E1 Субстрат карбокатион продукт Механизм E2.В этом случае отрыв протона и галогенид-иона происходит синхронно, т. е. одновременно: Фреоны (хладоны) - техническое название группы насыщенных алифатических фторсодержащих углеводородов, применяемых в качестве хладагентов, пропеллентов, вспенивателей, растворителей Физические свойства - бесцветные газы или жидкости, без запаха. Хорошо растворимы в неполярных органических растворителях, очень плохо - в воде и полярных растворителях. Применение Используется в качестве рабочего вещества - хладагента в холодильных установках. Как выталкивающая основа в газовых баллончиках. Применяется в парфюмерии и медицине для создания аэрозолей. Применяется в пожаротушении на опасных объектах (например, электростанции, корабли и т. д.) Химические свойства Фреоны очень инертны в химическом отношении, поэтому они не горят на воздухе, невзрывоопасны даже при контакте с открытым пламенем. Однако при нагревании фреонов свыше 250 °C образуются весьма ядовитые продукты, например фосген COCl2, который в годы первой мировой войны использовался как боевое отравляющее вещество. CFH3 фтормета CF2H2 дифторметан CF3H трифторметан CF4 тетрафторметан итд 17вопрос.общее представление о галогенопроизводных ароматических углеводородов и пестицидах на их основе.Спирты и фенолы:классификация,строение ……. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ).Типичными представителями ароматических углеводородов являются производные бензола, т.е. такие карбоциклические соединения, в молекулах которых имеется особая циклическая группировка из шести атомов углерода, называемая бензольным или ароматическимядром.Общая формула ароматических углеводородов CnH2n-6. C6Н6 соед называется бензолом. Фенолы – производные ароматических углеводородов, в молекулах которых гидроксильная группа (- ОН) непосредственно связана с атомами углерода в бензольном кольце. Классификация фенолов Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле: Изомерия и номенклатура фенолов Возможны 2 типа изомерии: изомерия положения заместителей в бензольном кольце Строение молекулы СПИРТЫ Спиртами называют производные углеводородов, содержащие группу (или несколько групп) -ОН, называемую гидроксильной группой или гидроксилом. По числу гидроксильных групп, содержащихся в молекуле, спирты делятся на одноатомные (с одним гидроксилом), двухатомные (с двумя гидроксилами), трехатомные (с тремя гидроксилами) и многоатомные. ОДНОАТОМНЫЕ СПИРТЫ Общая формула: CnH2n+1-OH Простейшие представители: МЕТАНОЛ (древесный спирт) СН3ОН – жидкость (tкип=64,5; tпл=-98; ρ = 0,793г/см3) Метанол СН3ОН используют как растворитель Этанол С2Н5ОН – исходное соединение для получения ацетальдегида, уксусной кислоты Получение этанола: брожение глюкозы C6H12O6 дрожжи → 2C2H5OH + 2CO2 · гидратация алкенов CH2=CH2 + HOH t,kat-H3PO4→ CH3-CH2-ОH Свойства спиртов: Спирты горят в кислороде и на воздухе, как и углеводороды: 2CH3OH + 3O2 t→ 2CO2 + 4H2O + Q

17 Кислотные свойства спиртов,фенолов
Кислотные свойства фенолов

Несмотря на то, что фенолы по строению подобны спиртам, они являются намного более сильными кислотами, чем спирты. Для сравнения приведем величины рКа в воде при 25 о С для фенола (10,00), для циклогексанола (18,00). Из этих данных следует, что фенолы на восемь и более порядков по кислотности превосходят спирты.

Диссоциация спиртов и фенолов представляет собой обратимый процесс, для которого положение равновесия количественно характеризуется величиной разности свободных энергий G о продуктов и исходных веществ. Для определения влияния строения субстрата на положение кислотно-основного равновесия необходимо оценить разницу энергий между кислотой ROH и сопряженным основанием RO- . Если структурные факторы стабилизируют сопряженное основание RO- в большей степени, чем кислоту ROH, константа диссоциации возрастает и рКа, соответственно уменьшается. Напротив, если структурные факторы стабилизируют кислоту в большей степени, чем сопряженное основание, кислотность уменьшается, т.е. рКа возрастает. Фенол и циклогексанол содержат шестичленное кольцо и поэтому структурно похожи, но фенол в 10 8 раз более сильная ОН-кислота по сравнению с циклогексанолом. Это различие объясняется большим +М эффектом О- в феноксид-ионе. В алкоголят-ионе циклогексанола отрицательный заряд локализован только на атоме кислорода и это предопределяет меньшую стабильность алкоголят-иона по сравнению с феноксид-ионом. Феноксид-ион относится к типичным амбидентным ионам, т.к. его отрицательный заряд делокализован между кислородом и атомами углерода в орто- и пара- положениях бензольного кольца. Поэтому для феноксид-ионов, как амбидентных нуклеофилов, должны быть характерны реакции не только с участием атома кислорода, но и с участием атома углерода в орто- и пара-положениях в бензольном кольце. Влияние заместителя в бензольном кольце на кислотность фенолов согласуется с представлениями об их электронных эффектах. Электронодонорные заместители понижают, а электроноакцепторные - усиливают кислотные свойства фенолов. В таблицах 1 и 1а приведены данные по кислотности некоторых фенолов в воде при 25 о С.

Таблица 1.

Величины рКа орто-, мета- и пара-замещенных фенолов в воде при 25 о С

Заместитель орто мета пара
H 10.00 10.00 10.00
CH 3 10.29 10.09 10.26
C(CH 3) 3 10.62 10.12 10.23
C 6 H 5 10.01 9.64 9.55
OCH 3 9.98 9.65 10.21
COOC 2 H 5 9.92 9.10 8.34
F 8.73 9.29 9.89
Cl 8.56 9.12 9.41
Br 8.45 9.03 9.37
I 8.51 9.03 9.33
HCO 8.37 8.98 7.61
CN 6.86 8.61 7.97
NO 2 7.23 8.36 7.15

Таблица 1а

Величины рК а некоторых полизамещенных фенолов и нафтолов

18 Реакции Sе в спирах,фенолах
19 Реакция Sn2 в спирах,фенолах
20 Реакции бензольного ядра в фенолах и ароматических спиртах
21 Номенклатура,изомерия, строения карбонильных соединений

Получение

Краун-эфиры получают конденсацией дигалогеналканов или диэфиров п- толуолсульфокислоты с полиэтиленгликолями в тетрагидрофуране, 1,4-диоксане, диметоксиэтане, диметилсульфоксиде, трет -бутаноле в присутствии оснований (гидриды, гидроксиды, карбонаты); внутримолекулярной циклизацией монотозилатов полиэтиленгликолей в диоксане, диглиме или тетрагидрофуране в присутствии гидроксидов щелочных металлов, а также циклоолигомеризацией этиленоксида в присутствии BF 3 и борофторидов щелочных и щелочноземельных металлов.

Азакраун-эфиры получают ацилированием ди- или полиаминов с частично защищёнными аминогруппами хлорангидридами дикарбоновых кислот с последующим восстановлением образующихся макроциклическихдиамидов; алкилированием дитозилдиаминов дигалогенпроизводными или дитозилатами гликолей в присутствии гидридов или гидроксидов щелочных металлов.

Тиакраун-эфиры получают из тиааналогов полиэтиленгликолей аналогично обычным краун-эфирам или алкилированием дитиолов дигалогенидами или дитозилатами в присутствии оснований.

Применение

Краун-эфиры используются для концентрирования, разделения, очистки и регенерации металлов, в том числе редкоземельных; для разделения нуклидов, энантиомеров; как лекарственные препараты, антидоты, пестициды; для создания ион-селективных датчиков и мембран; как катализаторы в реакциях с участием анионов.

Тетразакраун эфир циклен, в котором все атомы кислорода замещены на азот , используется в магнитно-резонансная томографии в качестве контрастного вещества.

Алкены.

Алкены. – это непредельные углеводороды, молекула которых содежит одну двойную связь.

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом S R .

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) - процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl , Н, СН 3 , СН 2 и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород. В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным окислителям, как концентрированная серная и азотная кислоты, перманганат и дихромат калия (КMnО 4 , К 2 Cr 2 О 7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH 4 + 2O 2 = CO 2 + 2H 2 O

Б) неполное сгорание при недостатке кислорода:

2CH 4 + 3O 2 = 2CO + 4H 2 O

CH 4 + O 2 = C + 2H 2 O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 о С) в присутствии катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

3. Термические превращения алканов

Крекинг

Крекинг (от англ. to crack — рвать) — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH 2 -CH 2 -CH 3 + CH 3 -CH=CH 2

Крекинг бывает термический и каталитический. Для осуществления каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С-Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH 4 → C 2 H 2 + 3H 2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН 4 → С + 2Н 2

При дегидрировании остальных алканов образуются алкены:

C 2 H 6 → C 2 H 4 + H 2

При дегидрировании н -бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс -изомеров):

Дегидроциклизация

Изомеризация

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов. Для циклопропана и циклобутана, как ни странно, характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH 3 -СН=СН 2 + Н 2 → CH 3 -СН 2 -СН 3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН 2 =СН 2 + Br 2 → CH 2 Br-CH 2 Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

C n H 2n + (3/2)nO 2 → nCO 2 + nH 2 O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO 4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Реакции присоединения

Например, присоединение галогенов:

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Реакции полимеризации

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Галогенирование

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает по электрофильному механизму последовательно в две стадии:

Гидрогалогенирование

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

Гидратация

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

Окисление алкинов

Алкины сгорают в кислороде:

С n H 2n-2 + (3n-1)/2 O 2 → nCO 2 + (n-1)H 2 O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH 2 → NaC≡CNa + 2NH 3 ,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется при синтезе более сложных органических соединений с тройной связью:

СН 3 -C≡CН + NaNН 2 → СН 3 -C≡CNa + NН 3

СН 3 -C≡CNa + CH 3 Br → СН 3 -C≡C-СН 3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Реакции замещения

Галогенирование

Нитрование

Лучше всего реакция нитрования протекает под действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.<

Реакции присоединения

Гидрирование

Присоединение хлора

Протекает по радикальному механизму при интенсивном облучении ультрафиолетовым светом:

Подобным образом реакция может протекать только с хлором.

Реакции окисления

Горение

2С 6 Н 6 + 15О 2 = 12СО 2 + 6Н 2 О+Q

Неполное окисление

Бензольное кольцо устойчиво к действию таких окислителей как KMnO 4 и K 2 Cr 2 O 7 . Реакция не идет.

Деление заместителей в бензольном кольце на два типа:

Рассмотрим химические свойства гомологов бензола на примере толуола.

Химические свойства толуола

Галогенирование

Молекулу толуола можно рассматривать, как состоящую из фрагментов молекул бензола и метана. Поэтому логично предположить, что химические свойства толуола должны в какой-то мере сочетать химические свойства этих двух веществ, взятых по отдельности. В частyости, именно это и наблюдается при его галогенировании. Мы уже знаем, что бензол вступает в реакцию замещения с хлором по электрофильному механизму, и для осуществления данной реакции необходимо использовать катализаторы (галогениды алюминия или трехвалентного железа). В то же время метан так же способен реагировать с хлором, но уже по свободно-радикальному механизму, для чего требуется облучение исходной реакционной смеси УФ-светом. Толуол, в зависимости от того, в каких условиях подвергается хлорированию, способен дать либо продукты замещения атомов водорода в бензольном кольце – для это нужно использовать те же условия что и при хлорировании бензола, либо продукты замещения атомов водорода в метильном радикале, если на него, как и на метан действовать хлором при облучении ультрафиолетом:

Как можно заметить хлорирование толуола в присутствии хлорида алюминия привело к двум разным продуктам – орто- и пара-хлортолуолу. Это обусловлено тем, что метильный радикал является заместителем I рода.

Если хлорирование толуола в присутсвии AlCl 3 проводить в избытке хлора, возможно образование трихлорзамещенного толуола:

Аналогично при хлорировании толуола на свету при большем соотношении хлор/толуол можно получить дихлорметилбензол или трихлорметилбензол:

Нитрование

Замещение атомов водорода на нитрогрппу, при нитровании толуола смесью концентрированных азотной и серной кислот, приводит к продуктам замещения в ароматическом ядре, а не метильном радикале:

Алкилирование

Как уже было сказано метильный радикал, является ориентантом I рода, поэтому его алкилирование по Фриделю-Крафтсу приводит продуктам замещения в орто- и пара-положения:

Реакции присоединения

Толуол можно прогидрировать до метилциклогексана при использовании металлических катализаторов (Pt, Pd, Ni):

С 6 Н 5 СН 3 + 9O 2 → 7СO 2 + 4Н 2 O

Неполное окисление

При действии такого окислителя, как водный раствор перманганата калия окислению подвергается боковая цепь. Ароматическое ядро в таких условиях окислиться не может. При этом в зависимости от pH раствора будет образовываться либо карбоновая кислота, либо ее соль.

ДИЕНОВЫЕ УГЛЕВОДОРОДЫ (АЛКАДИЕНЫ)

Диеновые углеводороды или алкадиены – это непредельные углеводороды, содержащие две двойные углерод - углеродные связи. Общая формула алкадиенов C n H 2 n -2 .
В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен CH 2 =C=CH 2 ;

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 CH 2 =CH–CH 2 –CH=CH 2 ;

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил CH 2 =CH–CH=CH 2 , 2-метилбутадиен -1,3 или изопрен

2) дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С.В.Лебедева)

2CH 3 CH 2 OH –– ~ 450 ° С;ZnO,Al2O3 ® CH 2 =CH–CH=CH 2 + 2H 2 O + H 2

Физические свойства

Химические свойства

Атомы углерода в молекуле бутадиена-1,3 находятся в sp 2 - гибридном состоянии, что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p- орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.


a)

b)
Схематическое изображение строения молекул дидивинила (а) и вид модели сверху (b).
Перекрывание электронных облаков между С 1 –С 2 и С 3 –С 4 больше, чем между С 2 –С 3 .

p- Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s- связью, а обладает некоторой плотностью p- электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p- электронов, т.е. равномерное распределение p- электронной плотности по всей молекуле с образованием единого p- электронного облака.
Взаимодействие двух или нескольких соседних p- связей с образованием единого p- электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения .
Таким образом, молекула бутадиена -1,3 характеризуется системой сопряженных двойных связей.
Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2- присоединение), но и к двум концам сопряженной системы (1,4- присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4- присоединения является основным.
Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов.

Полимеризация диеновых соединений

В упрощенном виде реакцию полимеризации бутадиена -1,3 по схеме 1,4 присоединения можно представить следующим образом:

––––® .

В полимеризации участвуют обе двойные связи диена. В процессе реакции они разрываются, пары электронов, образующие s- связи разобщаются, после чего каждый неспаренный электрон участвует в образовании новых связей: электроны второго и третьего углеродных атомов в результате обобщения дают двойную связь, а электроны крайних в цепи углеродных атомов при обобщении с электронами соответствующих атомов другой молекулы мономера связывают мономеры в полимерную цепочку.

Элементная ячейка полибутадиена представляется следующим образом:

.

Как видно, образующийся полимер характеризуется транс - конфигурацией элементной ячейки полимера. Однако наиболее ценные в практическом отношении продукты получаются при стереорегулярной (иными словами, пространственно упорядоченной) полимеризации диеновых углеводородов по схеме 1,4- присоединения с образованием цис - конфигурации полимерной цепи. Например, цис- полибутадиен

.

Натуральный и синтетический каучуки

Натуральный каучук получают из млечного сока (латекса) каучуконосного дерева гевеи, растущего в тропических лесах Бразилии.

При нагревании без доступа воздуха каучук распадается с образованием диенового углеводорода – 2- метилбутадиена-1,3 или изопрена. Каучук – это стереорегулярный полимер, в котором молекулы изопрена соединены друг с другом по схеме 1,4- присоединения с цис - конфигурацией полимерной цепи:

Молекулярная масса натурального каучука колеблется в пределах от 7 . 10 4 до 2,5 . 10 6 .

транс - Полимер изопрена также встречается в природе в виде гуттаперчи.

Натуральный каучук обладает уникальным комплексом свойств: высокой текучестью, устойчивостью к износу, клейкостью, водо- и газонепроницаемостью. Для придания каучуку необходимых физико-механических свойств: прочности, эластичности, стойкости к действию растворителей и агрессивных химических сред – каучук подвергают вулканизации нагреванием до 130-140°С с серой. В упрощенном виде процесс вулканизации каучука можно представить следующим образом:

Атомы серы присоединяются по месту разрыва некоторых двойных связей и линейные молекулы каучука "сшиваются" в более крупные трехмерные молекулы – получается резина, которая по прочности значительно превосходит невулканизированный каучук. Наполненные активной сажей каучуки в виде резин используют для изготовления автомобильных шин и других резиновых изделий.

В 1932 году С.В.Лебедев разработал способ синтеза синтетического каучука на основе бутадиена, получаемого из спирта. И лишь в пятидесятые годы отечественные ученые осуществили каталитическую стереополимеризацию диеновых углеводородов и получили стереорегулярный каучук, близкий по свойствам к натуральному каучуку. В настоящее время в промышленности выпускают каучук,

Строение и свойства углеводородов

Углеводороды — это органические соединения, молекулы которых состоят из атомов двух элементов: углерода (углерода) и водорода (водорода). От углеводородов происходят различные классы органических соединений.

Углеводороды могут отличаться между собой по строению карбоновой цепи. Благодаря способности атомов углерода образовывать циклы и цепи разных размеров и форм, различные типы химической связи возможно существование огромного количества углеводородов. Углеводороды различных типов отличаются между собой степенью насыщенности их атомами водорода. А потому атомы углерода, образуя цепь, могут связываться между собой с помощью простых (одинарных), двойных или тройных связей.

Зависимости от химического строения и связанных с этим свойств углеводороды разделяют на группы, или ряды, главными из которых являются насыщенные углеводороды, ненасыщенные углеводороды и ароматические.

Насыщенными называют углеводороды с открытым (не замкнутым) карбоновой цепью, общая формула которых CnH2n + 2. В этих углеводородов все четыре валентности атома углерода максимально насыщены атомами водорода. Поэтому такие углеводороды называют насыщенными.

Согласно современной номенклатуры насыщенные углеводороды называют алканами. Молекулы алканов содержат только простые (одинарные) s связи между атомами и вступают только в реакции замещения. Они не обесцвечивают раствор калий перманганата KMnO4, бромную воду, не окисляются растворами кислот и щелочей, не вступают в реакции присоединения.

Ненасыщенными называют углеводороды с двойными и тройными связями между атомами углерода в молекулах. В этих углеводородов не все валентности атома углерода максимально насыщены атомами водорода. Поэтому такие углеводороды называют ненасыщенными.

Зависимости от количества и характера кратных связей ненасыщенные углеводороды классифицируют на такие ряды: этилена (алкены) CnH2n, диеновые (диены) CnH2n-2, ацетиленовые (алкины) CnH2n-2.

Молекулы этиленовых углеводородов содержат один двойной или s, p-связь. Молекулы диеновых углеводородов содержат два двойных связи. А молекулы ацетиленовых углеводородов содержат один тройную связь.

Для ненасыщенных углеводородов характерны реакции присоединения. Они могут присоединять водород (гидрирования), хлор, бром и т.п. (галогенов), водород галогены HCl, HBr, воду (это реакция гидратации). Также они вступают в реакции полимеризации, обесцвечивают раствор калий перманганата, бромную воду, окисляются растворами кислот и щелочей.

Ароматическими называют углеводороды циклической (замкнутой) строения, общая формула которых CnH2n-6. В молекулах ароматических углеводородов нет простых и двойных связей. Электронная плотность распределена равномерно, а потому все связи между атомами углерода в молекуле уровне. Точно это отражает структурная формула в виде правильного шестиугольника с кругом внутри. Это формула простейшего представителя класса аренов (ароматических углеводородов) бензола.

Основой всех органических веществ являются соединения, которые состоят из двух элементов – углерода и водорода. От такого достаточно простого состава они и получили своё название – углеводороды. Это класс соединений, разнообразных по структуре, химическим связям, свойствам. Их в свою очередь, делят на группы – ряды:

1) Насыщенные углеводороды

а) Алканы

2) Ненасыщенные углеводороды:

а) Алкены

б) Алкины

Все углеводороды не имеют цвета. При нормальных условиях они могут находиться в твёрдом, жидком или газообразном состояниях. Их агрегатное состояние зависит от массы молекул вещества. Чем больше масса молекул, тем труднее разорвать связи между ними, так как с увеличением массы, как правило, увеличивается притяжение между молекулами, и затрудняются процессы плавления и испарения. Молекулярная масса оказывает влияние и на плотность вещества: с её увеличением плотность углеводорода увеличивается.

Общим свойством всех углеводородов, как и всех органических соединений, является горение – окисление кислородом. Например, в газовых плитах горит один из компонентов природного газа – пропан.

При сжигании пластмассовых предметов выделяется много ядовитых веществ, которые загрязняют атмосферу. Вдыхать дым костра, в котором сжигаются полимеры и пластмассы, чрезвычайно вредно.

Источником природных алканов являются нефть, попутные и природные газы. Природный газ содержит более 90% метана. Кроме метана, в нем содержится этан, пропан, бутан, немного азота, углекислого газа, иногда сероводород.

Нефть

Нефть представляет собой смесь различных алканов и других соединений. В ней присутствуют жидкие, твёрдые, а также нередко газообразные углеводороды. Газообразные углеводороды, растворённые в нефти, в недрах Земли находятся под давлением, а при выходе на поверхность они отделяются от жидкой нефти и образуют так называемые попутные газы. Они содержат меньше метана, а доля этана, пропана, бутана в них значительно больше, чем в природном газе. Ясно, что попутные газы не менее ценны, чем природный газ. И тем не менее с давних времён попутные газы на промыслах сжигают. В результате не только уничтожается ценное сырьё, но и наносится урон окружающей среде.

Алкены и алкины в природе практически не встречаются. Их получают из акланов отщеплением водорода в присутствии катализатора, например никеля. Такие реакции называются дегидрированием.

Природный газ является наиболее экономичным и экологичным топливом. Он используется на ТЭЦ, заводах, в быту. Жидкие углеводороды применяют в качестве горючего.

Как насыщенные, так и ненасыщенные углеводороды нужны не только в энергетике, но и в химической промышленности. Они служат сырьём для получения многих необходимых веществ: пластмасс, синтетических волокон, лаков и красок, лекарств, ацетона, спирта, сажы, водорода и других.

Для получения горючего топлива нефть подвергают переработке способом перегонки. Её сущность заключается в том, что при нагревании нефти до определённой температуры один за другим углеводороды испаряются, а затем конденсируются. Так получают горючее. А остатки перегонки используют в химической промышленности и для покрытия дорог.



Понравилась статья? Поделиться с друзьями: