Ученые оценили, сколько планет в нашей галактике и сколько из них потенциально пригодны для жизни. Что такое экзопланета? Примеры экзопланет Что значит экзопланета


ТИПЫ ЭКЗОПЛАНЕТ

С начала работы (октябрь 2005 года) и до недавнего времени (июнь 2007 года) на сайте Планетные системы была представлена другая сетка типов экзопланет, во многом позаимствованная у создателя сайта Extrasolar Visions Джона Ватмоуга (John Whatmough). Однако с осени 2005 года появилось много новых данных, которые вынудили меня полностью пересмотреть сетку типов. По совету Михаила Седых я отказалась от описательного подхода, когда тип планеты однозначно включал в себя такой заранее неизвестный параметр, как химический состав верхнего слоя облаков, и перешла к созданию жесткой сетки, мало зависящей от наших предположений. Теперь тип экзопланеты определяется двумя параметрами - ее массой и температурным режимом.

По массе все планеты делятся на 3 типа: гиганты (такие, как Юпитер и Сатурн), нептуны (такие, как Уран и Нептун) и планеты земного типа, или земли (такие, как Земля и Венера). Граница между гигантами и нептунами проходит по линии появления в недрах планет металлического водорода (около 60 масс Земли или 0.19 масс Юпитера). Граница между нептунами и землями довольно условно проведена по 7 массам Земли (просто потому, что Уран с его 14 массами Земли - еще явный нептун, а Земля - уже явно планета земного типа). Возможно, в интервале 3-10 масс Земли существуют планеты, чьи свойства резко отличаются как от свойств нептунов, так и от свойств планет земного типа, но пока они реально не открыты, не будем умножать сущности сверх необходимых.
Между планетами-гигантами, с одной стороны, и нептунами, с другой, существует много важных отличий помимо массы. Так, химический состав планет-гигантов близок к звездному химическому составу, т.е. они состоят преимущественно из водорода и гелия с небольшой (несколько процентов) примесью тяжелых элементов. Нептуны же состоят в основном из льдов (водяного льда, метана, аммиака и сероводорода) с заметной примесью скальных пород (силикатов и алюмосиликатов), количество водорода и гелия в их составе не превышает 15-20%. Наконец, планеты земного типа лишены не только водорода и гелия, но в значительной степени и льдов, и состоят в основном из силикатов с примесью железа.

Просуммируем свойства планет в зависимости от их массы.
1. Планеты-гиганты , масса в интервале от 0.19 до 13 масс Юпитера. Отличаются почти звездным химическим составом, т.е. состоят в основном из водорода и гелия. Быстро вращаются. Из-за колоссального давления в недрах планеты водород переходит в металлическую фазу (или, другими словами, становится вырожденным). Радиус планет, начиная от 0.3 масс Юпитера и до границы коричневых карликов (13 масс Юпитера), близок к радиусу Юпитера, или примерно в 10-11 раз превышает радиус Земли. Исключение составляют т.н. "горячие юпитеры" - планеты-гиганты, расположенные близко к своей звезде и имеющие эффективную температуру выше 1000К. Сильно нагретая светом близкой звезды, их атмосфера расширяется, увеличивая видимый радиус планеты до 1-1.4 радиуса Юпитера. Средняя плотность гигантов меняется от 0.28 г/куб.см (самые разреженные горячие юпитеры) до 12 г/куб.см (самые массивные планеты-гиганты в 10-12 масс Юпитера). Вторая космическая скорость этих планет превышает 37 км/сек и составляет обычно 45-70 км/сек. Скорее всего, все планеты-гиганты имеют сильное магнитное поле, усиливающееся с ростом массы планеты.
В Солнечной системе планеты-гиганты - Юпитер и Сатурн.

2. Нептуны , масса в интервале от 7 до 60 масс Земли (0.022 - 0.19 масс Юпитера). Состоят большей частью из льдов (водяного, аммиачного, метанового, сероводородного) и скальных пород, составляющих примерно четверть полной массы планеты. Доля водорода и гелия в составе планеты не превышает 15-20%. Давление в недрах недостаточно для перехода водорода в металлическую фазу. Радиус близок к 4 радиусам Земли. Средняя плотность составляет 1.3-2.2 г/куб.см., вторая космическая скорость 18-30 км/сек. Магнитное поле сильно отличается от дипольного (например, планета может иметь два северных и два южных полюса).
В Солнечной системе нептуны - Уран и Нептун.

3. Планеты земного типа , масса меньше 7 масс Земли. Состоят в основном из силикатов (скальная компонента) и железа. Средняя плотность 3.5-6 г/куб.см. Радиус меньше 2 радиусов Земли.
В Солнечной системе планеты земного типа - Меркурий, Венера, Земля и Марс.

Конечно, границы между типами не резкие, и возможны всякие промежуточные случаи. Так, планета с массой 5 масс Земли, сформировавшаяся за снеговой линией и потом мигрировавшая внутрь системы, будет иметь химический состав, среднюю плотность и внешний вид нептуна, а планета с массой 7 масс Земли, образовавшаяся во внутренней части богатого пылью газопылевого диска, может состоять из железа и силикатов и быть гигантской планетой земного типа.

По степени нагрева светом родительской звезды планеты делятся на 7 типов:
горячие R/Rэф очень теплые 0.1 теплые 0.4 прохладные 0.8 холодные 1.3 очень холодные 3 ледяные R/Rэф > 12
Здесь R - большая полуось орбиты планеты, Rэф - радиус эффективной земной орбиты .
Согласно этой классификации, Юпитер и Сатурн являются очень холодными гигантами, Земля - прохладной землей, Венера - теплой землей, а Уран - ледяным нептуном.

Остановимся на температурном делении подробнее.
Горячие планеты
Очень теплые планеты
Теплые планеты
Прохладные планеты
Холодные планеты
Очень холодные планеты
Ледяные планеты

Горячими гигантами, нептунами или землями называются планеты, для которых R/Rэф транзитными. Планета с наименьшим из известных значением R/Rэф - горячий гигант OGLE-TR-113 b , для которого R/Rэф = 0.013. Газовые гиганты, приблизившиеся к своей звезде ближе примерно 0.01 а.е., переполняют свою полость Роша и быстро разрушаются приливными силами.

Наиболее изученным типом среди горячих планет являются горячие гиганты, часто еще называемые горячими юпитерами. Первой экзопланетой, открытой в 1995 году у нормальной (не нейтронной) звезды была 51 Pegasi b - типичный горячий гигант. В 1999 году был обнаружен первый транзит горячего гиганта по диску своей звезды. Это был HD 209458 b (он же Озирис). Относительно высокая вероятность транзитной конфигурации у горячих планет привела к открытию 16 транзитных горячих гигантов.

Свойства транзитных горячих гигантов представлены в таблице .

К настоящему моменту было предпринято несколько попыток определить альбедо горячих гигантов. Ни одна из этих попыток не увенчалась успехом, были получены только верхние пределы. Так, с помощью канадского спутника МОСТ был получен верхний предел на альбедо Озириса - 25%, альбедо tau Bootis b оказалось меньше 39%, а альбедо HD 75289 b - меньше 12%. Судя по всему, горячие гиганты являются темными мирами, почти не отражающими свет своей звезды.
Оценим эффективную температуру горячих планет на границе этого типа (R/Rэф = 0.1). Для альбедо 0.2 эффективная температура составит 833К, для альбедо 0 - 881К. Заметим, что, начиная примерно с 900К, тепловое излучение нагретого тела становится видимым человеческим глазом (как тусклое темно-вишневое свечение). Горячие планеты будут светиться собственным багровым светом, особенно хорошо заметном на ночной стороне планеты.
Все горячие планеты, скорее всего, захвачены мощными приливными силами в орбитально-вращательный резонанс 1:1 и, подобно Луне по отношению к Земле, повернуты к своей звезде только одной стороной. С помощью орбитального инфракрасного телескопа им. Спитцера были измерены температуры "поверхности" нескольких горячих гигантов и определен температурный контраст между их "вечно ночным" и "вечно дневным" полушарием. Картина оказалась довольно неожиданной. Разница между температурами дневного и ночного полушария горячего гиганта Upsilon Andromedae b составила 1400К, причем температура ночного полушария этой планеты оказалась меньше 0С! Вместе с тем температурный контраст между полушариями горячего гиганта HD 189733 b оказался существенно меньше (около 250К), а "горячее пятно" оказалось заметно сдвинуто из подзвездной точки сильными экваториальными ветрами. Горячие гиганты 51 Пегаса, HD 209458 b и HD 179949 b и вовсе оказались равномерно раскаленными со средней температурой поверхности около 1200К.
По всей видимости, такая картина возникает из-за разной скорости атмосферной циркуляции различных горячих гигантов. Если характерное время перемешивания атмосферы оказывается заметно больше времени высвечивания газом тепловой энергии, в подзвездной точке планеты образуется горячее пятно с температурой 1600К и выше, а противоположное полушарие заметно остывает. При уменьшении времени перемешивания (и росте скорости ветра) температурный контраст между полушариями уменьшается, а горячее пятно оказывается сдуто сильными экваториальными ветрами из подзвездной точки в направлении вращения планеты. При дальнейшем усилении ветра горячее пятно размазывается вдоль экватора планеты в раскаленное экваториальное течение, а наиболее прохладными областями на планете оказываются зоны полюсов, где формируются постоянные вихри циклонического типа. В этом случае скорость ветра на экваторе может достигать 3-4 км/сек.
Наблюдения транзитного горячего гиганта HD 209458 b в линии атомарного водорода Лайман-альфа показали, что температура экзосферы планеты достигает 5-10 тыс. градусов. Планета медленно испаряется, теряя водород со скоростью примерно 10 тыс. тонн в секунду. За несколько миллиардов лет самые раскаленные горячие гиганты могут потерять заметную долю своей первоначальной массы. Отметим, что метана и аммиака в атмосферах горячих гигантов почти не будет. При температурах 1200К и выше химическое равновесие сдвигается в сторону образования угарного газа и молекулярного азота. Еще в газовой смеси будет присутствовать водяной пар и сероводород, а также газообразный металлический натрий (на уровне миллионных долей от количества молекулярного водорода). Натрий, углерод и кислород (в атомарном виде) действительно были обнаружены в экзосфере планеты HD 209458 b.

По мере уменьшения массы планеты темп убегания водорода из ее атмосферы резко возрастает. Ультрафиолетовое излучение близкой звезды с энергией квантов больше 4.3 эв будет разлагать молекулы водорода на атомы, часть образовавшихся атомов водорода будет улетучиваться в межпланетное пространство. При температуре экзосферы 5000К средняя скорость атомов водорода составит 9.3 км/сек, и даже при температуре экзосферы 1200К (явно заниженное значение) эта скорость превысит 4.5 км/сек.
Атмосфера устойчива в течение миллиардов лет, если средняя скорость атомов и молекул, ее составляющих, хотя бы в 6 раз ниже 2-й космической скорости. Это значит, что для устойчивости водорода в атмосфере горячей планеты ее вторая космическая скорость должна быть выше 56 км/сек (для температуры экзосферы 5000К) или хотя бы выше 27 км/сек (для температуры экзосферы 1200К). Вторая космическая скорость нептунов, как правило, ниже обоих этих значений. Это значит, что горячие нептуны будут в значительной степени (а может, и полностью) лишены водорода, и основной атмосферной составляющей таких планет будет гелий.
Рассмотрим устойчивость гелия в атмосфере горячих планет. При температуре экзосферы 5000К средняя скорость одноатомной молекулы гелия составит 4.64 км/сек, при температуре 1200К - 2.3 км/сек. Критическое значение второй космической скорости, при которой гелий также будет рассеиваться, составит 28 км/сек (в первом случае) и 14 км/сек (во втором). Иначе говоря, самые близкие к своей звезде и горячие нептуны окажутся лишены не только водорода, но и гелия (особенно это касается планеты HD 219828 b , для которой R/Rэф = 0.028). В этом случае атмосфера планеты будет состоять из молекулярного азота, угарного газа и инертных газов, таких как неон и аргон.
При оттоке водорода весьма вероятно фотохимическое образование сложных органических соединений типа полиароматических углеводородов, которые затянут атмосферу горячего нептуна плотным черным смогом. По аналогии с Титаном можно сказать, что диск планеты будет лишен деталей, а альбедо горячих нептунов, как и горячих гигантов, окажется очень низким.

На данный момент не известно ни одной горячей земли, т.е. планеты, чья масса меньше 7 масс Земли и для которой R/Rэф КОРОТ, запущенным на околоземную орбиту 27 декабря 2006 года. Этот спутник предназначен для изучения строения звездных недр методом астросейсмологии и открытия экзопланет методом наблюдения транзитов.

В Солнечной системе нет ни одной горячей планеты.

Так выглядят горячие гиганты с точки зрения разных художников.

Область очень теплых планет простирается от 0.1 до 0.4 приведенных астрономических единиц (0.1

На данный момент известен только один транзитный очень теплый нептун - это планета GJ 436 b (R/Rэф = 0.14). Его масса составляет 22.6 ± 1.9 масс Земли, радиус 4.2 ± 0.2 земных радиусов, средняя плотность равна 1.71 ± 0.31 г/куб.см, вторая космическая скорость близка к 26 км/сек. В зависимости от альбедо (которое пока неизвестно) его эффективная температура может составлять 630-700К. Прямое измерение температуры планеты с помощью космического инфракрасного телескопа им. Спитцера дало значение 712 ± 36К, что говорит о низком альбедо и/или дополнительном разогреве планеты приливными силами. Температура его экзосферы должна быть выше температуры экзосферы Земли (1500К), но ниже температуры экзосферы Озириса (5000К). Если грубо оценить ее в 3000К, то средняя скорость атомов водорода составит 7.2 км/сек, что всего в 3.6 раза меньше второй космической скорости. Весьма вероятно, что GJ 436 b уже потерял значительную долю водорода, и в его атмосфере преобладает гелий. Скорее всего, атмосфера планеты затянута темным органическим смогом.

На данный момент вне Солнечной системы известна только одна очень теплая земля, Gliese 876 d . Ее минимальная масса 5.7 масс Земли, она вращается вокруг близкого красного карлика Gliese 876 на расстоянии 0.021 а.е. (чуть больше 3 млн.км) и делает один оборот за 1.938 суток. Почти наверняка она захвачена в резонанс 1:1 и повернута к своей звезде только одной стороной. При R/Rэф = 0.13 ее эффективная температура составляет 650-770К в зависимости от альбедо. Плотная атмосфера может состоять из азота, углекислого и угарного газов, водяного пара и сероводорода. Весьма вероятно, что из-за сильного парникового эффекта температура поверхности этой планеты очень высока, а поверхность покрыта обширными лавовыми морями.

Горячая или очень теплая земля в отсутствии атмосферы и при ее наличии (художник Алексей Корецкий).

В Солнечной системе в область очень теплых планет попадает Меркурий (большая полуось орбиты 0.387 а.е.). Точнее, он находится вблизи внешней границы этой области, в перигелии погружаясь в нее достаточно глубоко (до 0.308 а.е.), а в афелии уходя в зону теплых планет (0.467 а.е.)

Зона теплых планет простирается от 0.4 до 0.8 приведенных астрономических единиц (0.4 В случае солнечного химического состава атмосфера теплых гигантов будет чиста, прозрачна и практически лишена облаков на большую глубину. Из-за рэлеевского рассеяния света в прозрачной атмосфере диск теплого гиганта будет казаться синим, голубым или серо-голубым, подобно голубому небу на Земле. Ожидается, что альбедо таких планет будет достаточно высоким (0.4-0.5), особенно в коротковолновой части спектра.

Теплый нептун будет уже достаточно прохладен, чтобы удержать водород в своей атмосфере. Весьма вероятно, что его атмосфера будет содержать несколько процентов метана, аммиака, водяного пара и сероводорода. Скорее всего, диск теплого нептуна, как и диск теплого гиганта, будет небесно-голубым и почти лишенным деталей, но вблизи верхней границы температурной зоны (около 0.8 R/Rэф) в районе полюсов уже возможны легкие облака из водяного льда.
В сильно восстановительной (водородной) атмосфере планет-гигантов сера может присутствовать только в виде сероводорода, но в нейтральной (азотной) или окислительной (углекислой) атмосфере она может окислиться до сернистого газа или серной кислоты. Сравнительно маломассивные планеты земного типа, попавшие в температурный диапазон теплых планет, скорее всего, будут иметь атмосферу из углекислого газа с примесью азота и водяного пара и будут окутаны белыми облаками из серной кислоты. В зависимости от плотности и глубины атмосферы у таких планет может развиваться сильный (или не очень сильный) парниковый эффект, приводящий к высокой температуре на поверхности, значительно превышающей эффективную температуру. Типичный пример теплой земли - Венера.

Температурная зона прохладных планет простирается от 0.8 до 1.3 приведенных астрономических единиц (0.8 Планеты-гиганты, находящиеся в этой зоне, скорее всего, будут окутаны облаками из водяного льда. При обилии кислорода (а значит, и воды) в составе таких планет облачность может быть сплошной, делая планету ярко-белой. При дефиците кислорода (например, на Юпитере по данным зонда Галилео количество кислорода составляет всего ~ 0.3 от количества кислорода на Солнце) облака из водяного льда будут формироваться только в зонах апвеллинга, при подъеме воздушных масс из глубины. В местах опускания воздушных масс атмосфера будет слишком теплой и сухой для появления облаков, и рэлеевское рассеяние света в прозрачной атмосфере окрасит эти области в голубой цвет. В результате такая планета примет характерный полосатый вид подобно полосатому виду Юпитера, только цвет полос будет белым и голубым. Эффективная температура прохладных гигантов будет меняться примерно от 270 до 200К (для сравнения, эффективная температура Земли 253К).
Прохладные нептуны, состоящие в основном из льдов, будут иметь в своем составе достаточно воды для формирования сплошной облачности из водяного льда, их альбедо ожидается высоким (на уровне альбедо Венеры, т.е. 60-70%)

Прохладные земли - климатические аналоги Земли. Предполагается, что атмосфера прохладных земель (как и других планет земного типа) имеет вторичное происхождение из вулканических газов. При базальтовом вулканизме в состав вулканических газов входят в первую очередь водяной пар, углекислый газ, сернистый газ и кислые дымы (хлороводород, фтороводород), иногда присутствуют водород, метан и угарный газ. При невысокой температуре поверхности планеты водяной пар конденсируется, и в образующихся океанах растворяются углекислый газ, сернистый газ и галогеноводороды, образуя в результате карбонаты, сульфаты и хлориды (фториды и пр.) Таким образом, в отличие от атмосфер теплых земель, состоящих в основном из углекислого газа и создающих мощный парниковый эффект, атмосферы прохладных земель оказываются сравнительно тонкими и в основном азотными, подобно атмосфере Земли. Правда, пока неизвестно, насколько важную роль в этом процессе сыграла жизнь и существуют ли безжизненные прохладные земли с азотной (а не углекислой) атмосферой.

Температурная зона холодных планет простирается от 1.3 до 3 приведенных астрономических единиц (1.3 При солнечном химическом составе при 180-200К в атмосферах холодных гигантов будет конденсироваться гидросульфид аммония NH4 SH - вещество, которым сложены бежевые облака Юпитера. Чистый гидросульфид аммония бесцветен, но под действием ультрафиолетового излучения он частично разлагается с образованием элементарной серы и полисульфидов, окрашиваясь в желтовато-бежево-коричневые тона. В зависимости от количества серы и азота в атмосфере холодного гиганта облака из гидросульфида аммония могут быть или сплошными, окутывая всю планету бежево-коричневым покрывалом, или возникать в зонах подъема воздушных масс над более низким слоем облаков из водяного льда - в этом случае планета будет выглядеть контрастно полосатой. Ожидается, что альбедо холодных гигантов будет достаточно высоким (40-60%).


Внешний вид и состав внешнего слоя облаков холодного нептуна будет сильно зависеть от деталей его химического состава. При обилии азота он будет окутан белыми облаками из замерзшего аммиака, при обилии серы - покрыт облаками из гидросульфида аммония. При резком преобладании серы над азотом возможно образование облаков из жидких капелек сероводорода. Облака из водяного льда уходят в глубину и больше не видны из космоса.
В Солнечной системе в зону холодных планет попадает Марс и главный пояс астероидов.

Температурная зона очень холодных планет простирается от 3 до 12 приведенных астрономических единиц (3 Очень холодные гиганты, скорее всего, будут окутаны облаками из замерзшего аммиака. В атмосфере Юпитера аммиак конденсируется при температуре 140-150К и давлении 0.75 атм. На Сатурне основной слой аммиачных облаков расположен при температуре около 150К и давлении 1.4 атм., однако выше находится надоблачная дымка (из мелких кристаллов аммиака), плотная над экватором и редеющая к полюсам. По всей видимости, все планеты-гиганты в интервале расстояний от 5 до 9 приведенных астрономических единиц будут окутаны светло-светло-бежевыми облаками из замерзшего аммиака. Вблизи нижней границы очень холодных гигантов (Rэф ~ 3-5) аммиак будет конденсироваться только вблизи тропопаузы, в восходящих воздушных потоках. В нисходящих потоках воздух будет слишком теплым и сухим для образования аммиачных облаков, и там из космоса будут видны более низкие облака из гидросульфида аммония. В результате планета-гигант будет выглядеть контрастно-полосатой подобно Юпитеру. При увеличении эффективного расстояния температура планет будет падать, и аммиачные облака станут сплошными (подобно аммиачным облакам Сатурна). Вблизи верхней границы зоны очень холодных гигантов (Rэф ~ 12) аммиачные облака уходят в глубину, и диск планеты окрашивается голубым из-за рэлеевского рассеяния света в холодной прозрачной атмосфере.

Миры, обитающие на орбитах других звезд, называются «экзопланетами», и они бывают самыми разными: от гигантских газовых гигантов, превосходящих по размеру Юпитер, до небольших скалистых планет подобных Земле или Марсу. Далекие планеты могут быть достаточно горячими, что металл плавится на их поверхностях, или ледяными снежными шарами. Многие из них так быстро и близко вращаются вокруг своих звезд, что их год длится несколько земных дней. У некоторых может быть два солнца. Есть и изгнанные из своих систем странники, те, что блуждают в темноте по галактике.

Млечный Путь – огромное семейство звезд, простирающееся примерно на 100 000 световых лет. Его спиральная структура содержит около 400 миллиардов жильцов, и наше Солнце среди них. Если каждая из этих звезд имеет на орбите не одну планету, а несколько, как в Солнечной системе, то число миров в Млечном Пути просто астрономическое: счет идет на триллионы.

Тысячи звездных систем, проживающих в Млечном Пути. Credit: ESO/M. Kornmesser

Человечество несколько веков размышляло о возможности существования планет вокруг далеких звезд, и теперь мы с уверенностью говорим, что внесолнечные миры действительно существуют. Недавно у нашей ближайшей соседки, Проксима Центавра, была открыта , и, вероятно, она не одинока. Расстояние до нее примерно 4,5 световых года или 40 триллионов километров. Однако большая часть найденных экзопланет находится в сотнях или тысячах световых лет от нас.

Плохая новость: пока у нас нет способа добраться до них. Хорошая новость: мы можем смотреть на них, оценивать температуру, «прощупывать» атмосферу и, возможно, в ближайшее время обнаружим признаки жизни, которые скрыты в тусклом свете, поступающем от этих далеких миров.

Первой экзопланетой, вышедшей на мировую арену, была 51 Pegasi b, в 50 световых годах от нас, который совершает один оборот вокруг звезды за 4 земных дня. Поворотный момент, после которого внесолнечные планеты стали обычным делом, произошел в 1995 году.

Художественное представление горячего юпитера. Credit: ESO

Еще до 51 Pegasi b было несколько кандидатов. Экзопланета, известная сегодня как Тадмор, была обнаружена в 1988 году. Хотя из-за недостаточного количества доказательств ее существование было поставлено под сомнение в 1992 году, десять лет спустя дополнительные наблюдения подтвердили, что вокруг Гамма Цефея A действительно вращается планета. Затем, в 1992 году, была открыта система из «пульсарных планет». Эти миры вращаются у мертвой звезды, PSR 1257+12, проживающего на расстоянии 2300 световых лет от Земли.

Теперь мы живем во вселенной экзопланет. Их количество постоянно увеличивается, и на данный момент число подтвержденных планет за пределами Солнечной системы перешагнуло рубеж в 3700, но уже в ближайшем десятилетии график может скакнуть до отметки в десятки тысяч.

Как мы к этому пришли?

Мы стоим на пороге великих открытий. Эпоха ранних исследований и первые подтвержденные экзопланеты подготовили почву для следующего этапа: охоте за далекими мирами с более «зоркими» и сложными телескопами в космосе и на земле. Некоторым их них было поручено проводить точную перепись населения, вычисляя разнообразные размеры и типы экзопланет. Другие тщательно изучают отдельные миры, их атмосферы и потенциал для поддержания жизни.

Прямая визуализация экзопланет, то есть их фактические снимки, играют все более значимую роль, хотя ученые достигли текущий уровень знаний, главным образом, косвенными средствами. Два основных метода опираются на колебания и затмения.

«Охотник» за экзопланетами TESS. Credit: NASA

Сегодня об этом классе внесолнечных миров мало что известно, в том числе пригодны ли они для жизни. Причина этому – отсутствие аналогов суперземли в Солнечной системе. Если нам повезет, одна из них покажет в своей атмосфере признаки кислорода, углекислого газа и метана. Однако охоту за атмосферами планет размером с Землю придется отложить до будущего поколения космических телескопов в 2030-х годах.

Благодаря телескопу «Kepler» теперь мы знаем, что звезды над нами окружены планетами. И мы можем быть уверены не только в огромном множестве экзопланетных соседей, но и в том, что приключение только начинается.

Наша планетная система из известных нам планет и других объектов была сформирована в ходе образования Солнца и всей Солнечной системы. Таким же образом в ходе процесса формирования других звезд у некоторых из них были сформированы объекты, которые образовали свою планетную систему.

На конец апреля 2013 года известно уже о 692 таких планетарных систем вокруг звезд, в которых подтверждено наличие планет других солнечных систем, причем в 132 таких системах имеется более одной планеты.

Если обнаружить и изучить далекую звезду становится не такой уж неразрешимой проблемой для современной науки, то обнаружить планету вблизи этой яркой звезды пока довольно затруднительно, поэтому чаще всего найденные планеты других Солнечных систем представляют собой крупные газовые гиганты наподобие наших Юпитера и Сатурна. Такие планеты вне нашей Солнечной системы называют экзопланеты . Сейчас уже известно о существовании 884 планет у которых есть свои звезды-Солнца, а в самой галактике Млечный путь по некоторым данным должно быть свыше 100 миллиардов планет, от 5 до 20 миллиардов которых, возможно, имеют схожие с нашей Землей характеристиками.

Известные планетные системы

PSR 1257+12 - самая первая планетная система, пульсар, передающий импульсы радиоизлучения в виде периодически повторяющихся всплесков, которые обнаружил в 1991 году польский астроном Александр Вольщан.

Пульсар PSR 1257+12 находится в 1000 световых лет от нашей Солнечной системы. Были обнаружены четыре планеты в единой системе B, C и D, которые напоминают наши Меркурий, Венеру и Землю, а также неподтвержденную четвертую карликовую планету на вроде нашего Плутона.

Планеты, действительно, имеют сходство с планетами земной группы нашей системы. Так, обращение вокруг другого Солнца планеты B - 25,262 суток; планеты C - 66,5419 суток; планеты D - 98,2114 суток. Правда, несмотря на то, что 2 из них планеты близки по массе и некоторым параметрам к Земли, условия жизни для человека на планетах неприемлимые из-за сильного СВЧ-излучения пульсара, сильнейшего магнитного поля, к тому же на планетах вероятно идет постоянные кислотные дожди.

Если хоть какая-то органическая жизнь и может существовать на планетах, то только под глубиной защитного льда и воды. На поверхности дозы радиации слишком сильны для развития организмов, но есть мнение, что так называемая бактерия Deinococcus radiodurans, встречаемая на Земле может пережить и более сильные дозы радиации, а значит, есть вероятность, что эволюция на других планетах способна создать организмы для жизни в условиях пульсара.

Ипсилон Андромеды - желтая звезда, схожая с нашим Солнцем у которой была обнаружена планетная система. Эта звезда находится на расстоянии 43,9 световых года от нас и видна невооруженным глазом. В ее лучах были обнаружены четыре планеты.

Планета B имеет период обращения всего 4,617 суток и имеет сходство с нашим горячи гигантом - Юпитером; планета C - газовый гигант обращается вокруг своей звезды 241,5 суток; планета D - равная 10 массам Юпитера с обращением 1284 суток, а также рассчитана орбита четвертой планеты E, которая находится намного дальше других планет своей системы.

Звезда желтый карлик, видимый невооруженным глазом при хорошем небе, по параметрам близко похожая на Солнце в созвездии Пегас на расстоянии 50,1 светового года.

Открытая планета b, по характеристикам экзопланета, имеющая орбиту вокруг своего Солнца скорее всего является газовым гигантом и имеет небольшой период обращения 4.23 суток

Подобная Солнцу звезда в созвездии Рака в планетной системе которой имеется Планета f на которой теоретически может быть вода.

Всего у системы известно о 5 планетах, но есть предположения о существовании еще 2 планет. Интересна планета e - горячая суперземля, масса которой превышает массу нашей Земли и имеет в составе большую долю углерода, а период обращения 17 часов 41 минута. Пятой обнаруженной планетой стала планета f, которая в 45 раз массивней Земли, но температура поверхности немного теплее Земной, потому что ее звезда тусклее и холоднее нашего Солнца. Предполагается наличие воды в большом количестве на поверхности этой пятой планеты.

Совсем молодая еще формирующаяся новая солнечная система UX Тельца располагается в 450 световых лет от нашего Солнца. Обнаружить ее удалось при помощи космического аппарата с мощным инфракрасным телескопом Spitzer, который работает на орбите планеты Земля. Вокруг звезды этой новой солнечной системы был обнаружен газопылевой диск с огромным разрывом, а так как у других протопланетных дисках молодых звезд такого не наблюдается, астрономы сошлись во мнении, что перед нами открылась удивительная картина формирования новой системы из Солнца и окружающих ее планет.

Экзопланеты других солнечных систем

Экзопланета в созвездии Змееносца, находящаяся в 40 световых лет от Земли на которой теоретически возможен океан. Планета в 2,5 раза крупнее и в 6,5 раз тяжелее Земли, а год длится всего 36 часов, по некоторым расчетам и предположениям планета может состоять на 75 % из воды и на 25 % из каменистых материалов, а в атмосфере должен присутствовать водород и гелий. Уникальное явление свойств на планете, за счет состава атмосферы планеты из густого водянистого пара при высокой температуре 200°С исследователи полагают, что вода на планете находится в нехарактерном для нашей Земли состоянии, таком как "горячий лёд" и "сверхжидкая вода".

Планета открытая одноименным телескопом "Кеплер" самая небольшая из экзопланет, судя по плотности является железной планетой, имеет массу в 1,4 раза больше земной и обращается вокруг себя почти, как наша планета в 0,84 земных суток. Правда, температура поверхности планеты скорее всего очень жаркая 1527°С.

Gliese 667 Cc

Глизе 667 C c - вторая по счету от звезды красного карлика Глизе 581 планета в созвездии Весов, которая находится в 20 световых лет от нас. Температура атмосферы, подобно земной, на поверхности планеты может составлять +27 °C, учитывая наличие в составе 1 % СО2 при парниковом эффекте.

Материнская звезда, вокруг которой вращается планета не яркая, потому что является красным карликом, но за счет близкого к ней расположения получает до 90% энергии от нее (примерно столько же Земля получает от Солнца), а значит условия для существования жизни на этой планете вполне приемлемы. Из-за близкого расположения к своему солнцу и огромного размера звезды, небо над поверхностью планеты будет рассеивать красноватый цвет.

Gliese 581 d

Третья от своей звезды красного карлика Глизе 581 планета, которая может оказаться пригодной для жизни. Это очень крупная планета по размерам в 2 раза превосходящая нашу Землю. Интересно, что моделирование планеты для пригодности к жизни показало, что на ней может присутствовать атмосфера с очень высоко располагающимися облаками из сухого льда, где на более низкой высоте возможны осадки.

Планета располагается очень близко к звезде, но так как ее солнце это красный карлик, то тепло от своей звезды она получает не такое жаркое и температура на поверхности планеты не многим больше 0°С. В дневное время над планетой нависает огромный шар звезды тусклого свечения, окрашивая ландшафт сумрачным оранжево-красным цветом.

Gliese 581 g

А вот на этой планете находящейся в системе звезды красного карлика Глизе 581 на расстоянии 20 световых лет от нас, условия самые пригодные для существования и развития жизни из всех известных на данный момент экзопланет. На планете, которая находится четвертой по счету от своего солнца-красного карлика, возможно, имеется атмосфера и есть вода в жидком виде, а поверхность состоит из каменистых гор и скалистых образований. Есть интересное предположение, что планета обращена всегда только одной стороной к своей звезде, а это значит, что на одной жаркой половине планеты всегда день, где температура поднимается до +71 °С, а на другой вечная ночь, где теоретически может быть снег при температуре −34 °С. При том, что у планеты может быть плотная атмосфера, распределение тепла смогло бы обогреть всю планету, делая некоторые области вполне пригодной для жизни.

Кстати, Австралийский ученый Рагбир Бхатал, являющийся членом проекта SETI по поиску внеземных цивилизаций утверждал, что в декабре 2008 года обнаружил резкие вспышки с поверхности планеты, напоминающие действие лазера. К сожалению, часть ученых эту версию опровергли.

Самая близкая по размеру экзопланета к нашей Земле, но из-за очень близкого расположения к своему солнцу температура на поверхности может составлять 760°С, а год пробегать очень быстро - всего за 6 дней.

Планета попадающая в зону обитаемости, где теоретически условия могут стать подходящими для жизни. Планета, находится в созвездии Парус на расстоянии 36 световых лет от нас и согревается умеренными лучами своей теплой звезды оранжевого карлика HD 85512. Температура на поверхности может составить 25 °C, но если атмосфера окажется по свойствам схожей с земной, то за счет парникового эффекта ее значение будет уже +78 °C. На планете большая вероятность наличия воды в жидком виде. Материнское солнце этой планеты светит в 8 раз слабее нашего Солнца, окрашивая поверхность умеренным оранжевым цветом, но за счет близкого расположения к звезде, планета получает необходимые для возникновения органической жизни тепло и свет.

Планета-океан, находящаяся на расстоянии около 620 световых лет от нашей Земли. Период обращения планеты вокруг своей звезды Kepler 290 суток, а температура, если окажется, что у планеты есть атмосфера будет около +22°C, что является благотворным для жизни на ней. Единственное, что эта планета скорее всего относится к классу мини-нептунов, вся ее поверхность скорее всего состоит из океана, поэтому если и есть жизнь на планете, то она скорее всего водная.

GD 66 b

GD 66 b - вероятно гелиевая экзопланета, вращающаяся по орбите вокруг белого карлика GD 66. Планета имеет скорее всего очень низкие температуры и на ней царит полумрак, что связанно с низкой светимостью ее родного солнца - белого карлика.

Планета с 3 солнцами в созвездии Лебедь. Экзопланета находящаяся в удивительной системе, состоящей из трех звезд. С поверхности этой планеты можно видеть главную яркую звезду HD 188753 A, которая является мощным источником света и тепла, а также намного менее яркую оранжевый карлик HD 188753 B и тусклую красный карлик HD 188753 C. Планета относится к классу газовых гигантов и имеет обращение вокруг своей главной звезды 3,35 дня.

Самая ближайшая к Земле планета другой солнечной системы Альфа Центавра на расстоянии от нашего Солнца примерно 4,37 световых лет. Имеет свою звезду солнечного типа Альфа Центавра B и представляет собой планету классификации типа суперземля и вращается очень близко к своей звезде на расстоянии примерно 6 млн км, поэтому температура поверхности очень высокая 1200 °C, а если бы можно представить вид на звездное небо с этой планеты, то (изображение художником на картинке) с планеты видно огромное раскаленную родную звезду и небольшую светящуюся точку (в правом верхнем углу картинки) - наше Солнце.

Вступление

Долгое время было затруднительно обнаружить такие планеты, т.к. они слишком малы и невидны на таком огромном межзвездном расстоянии. К примеру, до ближайшей звезды нужно лететь четыре с половиной года со скоростью света. Все такие планеты были обнаружены только в Млечном пути на различных расстояниях. Самая ближайшая из них является Альфа Центавра B b, примерное удаление от нас 4,36 световых года. Большинство обнаруженных экзопланет похожи на газовые гиганты Юпитер и Нептун.

По мнению многих ученых, общее количество таких планет в нашей галактике Млечный путь может достигать примерно 100 миллиардов, а до 20 миллиардов таких планет можно отнести к классу «землеподобных». Существует мнение, что около 34 % всех солнецеподобных звезд могут иметь землеподобные планеты в обитаемой зоне. Самая большая вероятность обнаружить обитаемую планету это, поиски вблизи коричневых карликов. Такие погасшие звезды самые старые в нашей галактике, их возраст может достигать до 14 миллиардов лет, а планеты в этих солнечных системах намного древнее нашей Земли.

История открытия экзопланет

Первым в истории сообщением о существовании некоего небесного тела у другой звезды, был астроном Мадрасской обсерватории, капитан В.С.Джейкоб. Сделанные им записи в 1855 году сообщали, что есть высокая вероятность существования космического тела размером с планету в системе 70 Змееносца (двойная система). Позднее в 1890 году Томас Дж. Си, астроном из Чикагского университета подтвердил догадку Джейкоба. Он сообщил, что двойная система 70 Змееносца имеет некий невидимый спутник звезды, с периодом обращения в 36 лет. Однако проведенные расчеты астрофизика Ф.Р.Мультона опровергают наличия экзопланеты в данной системе и по состоянию на 2014 год они не опровергались.
В 1916 году астроном Эдуард Барнард обнаружил звезду, которая представляла собой быстро смещающуюся красную точку на звездном небе. Эта небольшая звезда имеет массу меньшую, чем Солнце в 7 раз. Исходя их этого в 1960-х годах, астроном Питер Ван де Камп попытался вычислить у «Летящей звезды Барнарда» ее спутник. Он сообщил, что звезда имеет свой спутник с массой как у . Новые расчеты Дж. Гейтвуда в 1973 году опровергли наличия у этой звезды своих массивных планет.
Благодаря развитию науки в 1980 годах астрономы стали применять новые методы для обнаружения потенциальных экзопланет. В частности поиски начали с применением высокоточных спектрометров и новых научных методов.

В 1989 году сверхмассивная планета (или коричневый карлик) была найдена Д. Латамом около звезды HD 114762 A. Однако её планетный статус был подтверждён только в 1999 году.

Первые потонциальные к жизни планеты - Драугр и Полтергейст - были обнаружены у нейтронной звезды Лич (PSR 1257+12), их открыл астроном Александр Вольшчан в 1991 году. Эти планеты были признаны вторичными, возникшими уже после взрыва сверхновой.

В 1995 году астрономы Мишель Майор (Michel Mayor) и Дидье Келос (Didier Queloz) с помощью сверхточного спектрометра обнаружили покачивание звезды Гельвеций (51 Пегаса) с периодом 4,23 сут. Планета Димидий, вызывающая покачивания, напоминает Юпитер, но находится в непосредственной близости от светила. В среде астрономов планеты этого типа называют «горячими юпитерами».

В дальнейшем путём измерения лучевой скорости звёзд и поиска их периодического доплеровского изменения (метод Доплера) было обнаружено несколько сотен экзопланет.

В августе 2004 года в системе звезды Сервантес (μ Жертвенника) была обнаружена первая планета - горячий нептун Кихот. Она обращается вокруг светила за 9,55 суток, на расстоянии 0,09 а. е., температура на поверхности ~ 900 K (+626 °C), масса ~ 14 масс Земли.

Первая сверхземля, обращающаяся вокруг нормальной звезды (а не пульсара), была обнаружена в 2005 году около звезды Глизе 876. Её масса - 7,5 масс Земли.

В 2004 году было получено первое изображение (в инфракрасных лучах) кандидата в экзопланеты у коричневого карлика 2M1207.

13 ноября 2008 года впервые удалось получить изображение сразу целой планетной системы - снимок трёх планет, обращающихся вокруг звезды HR 8799 в созвездии Пегаса. Это первая планетная система, открытая у горячей белой звезды раннего спектрального класса (А5). Все открытые ранее планетные системы (за исключением планет у пульсаров) были обнаружены вокруг звёзд более поздних классов (F-M).

13 ноября 2008 года также впервые удалось обнаружить планету Дагон вокруг звезды Фомальгаут путём прямых наблюдений.

В 2011 году Дэвид Беннетт из Университета Нотр-Дам (Индиана, США) объявил на основе наблюдений 2006-2007 годов на 1,8-метровом телескопе Университетской обсерватории Маунт-Джон в Новой Зеландии об открытии с помощью метода микролинзирования 10 одиночных юпитероподобных планет. Правда, две из них могут быть высокоорбитальными спутниками ближайших к ним звёзд.

В сентябре 2011 года было объявлено об открытии двух подобных планет KIC 10905746 b и KIC 6185331 b любителями астрономии в рамках проекта Planet Hunters, предназначенного для анализа данных собранных телескопом «Кеплер». При этом упоминалось о 10 кандидатах в планеты, но на тот момент только два из них с достаточной степенью уверенности определялись учёными как экзопланеты. Планеты были найдены добровольными участниками проекта среди данных, которые профессиональные астрономы по тем или иным причинам отсеяли и если бы не помощь добровольцев, то эти планеты вероятно остались бы неоткрытыми.

5 декабря 2011 года телескопом Кеплер была обнаружена первая сверхземля в обитаемой зоне - Kepler-22 b.

20 декабря 2011 года телескопом Кеплер у звезды Кеплер-20 были обнаружены первые экзопланеты размером с Землю и меньше - Kepler-20 e (радиусом 0,87 земного и массой от 0,39 до 1,67 масс Земли) и Kepler-20 f (0,045 массы Юпитера и 1,03 радиуса Земли).

22 февраля 2012 года учёные из Гарвард-Смитсоновского центра астрофизики на расстоянии 40 световых лет от Земли открыли первую суперземлю, предположительно являющуюся планетой-океаном - GJ 1214 b. Последние данные транзитных проходов позволяют судить о наличии у GJ 1214 b протяжённой водородно-гелиевой атмосферы, низком уровне метана и слое облаков на уровне давления 0,5 бар, что не соответствует свойствам атмосферы с устойчивым доминированием водяных паров. Период обращения планеты вокруг звезды - красного карлика - 38 часов, расстояние составляет около 2 миллионов километров. Температура на поверхности планеты составляет примерно 230 °C. В 2015 году была обнаружена новая планета, похожая на молодой Юпитер.

Современные методы обнаружения экзопланет в других звездных системах


Фото «Популярная механика», нажмите для увеличения.

1. Метод Доплера - спектрометрический, стал самым распространенным методом для обнаружения потенциальных экзопланет оп массе в несколько масс Земли находящихся радом от звезды и планеты газовые-гиганты, с периодом обращения до 10 лет. Метод заключается в вычислении радиальной скорости звезды. Планета, когда вращается вокруг своей звезды, как бы раскачивает ее, смещая ее спектр (Доплеровское смещение спектра звезды). Данным методом удалось обнаружить на 2011 год 647 планет.


— этот метод заключается в наблюдении за изменением яркости звезды в момент прохождения на ее фоне планеты. Данный метод требует долгого наблюдения за звездой и если транзит был зафиксирован, то требуется неоднократное его подтверждение. Плюсом такого метода является определение размеров планеты, состав и наличие атмосферы (с применением спектрографа). Минусом данного метода является возможность увидеть планету только если она находится в одной плоскости при наблюдении. На 2011 год было обнаружено 185 потенциальных планет.


При вычислении подобных объектов требуется, что бы между предполагаемой планетой и наблюдателем на Земле находилась другая звезда (играющая роль линзы). В том случае, если у звезды-линзы есть спутники планеты, то наблюдается асимметричная кривая блеска. Этот метод применяется крайне редко, но при его помощи можно вычислить планеты с Земной массой.
На 2011 год данным методом вычислили 13 планет.


предполагает изменение пространственного движения звезды под воздействием гравитационного потенциала планеты. В основном этим методом производится уточнение массы и размер ранее обнаруженной экзопланеты, в частности были уточнены размеры Эпсилона Эридана b.


Крайне сложный метод обнаружения планет Земной группы, он заключается в измерении направленных пучков энергии излучаемых от пульсара. Если вокруг пульсара вращается некая планета, то излучаемый сигнал, имеет особенный осциллирующий характер. На 2010 год обнаружили 5 планет у двух пульсаров.


6. Прямое наблюдение. Данным методом можно вычислить планеты удаленные от своей звезды на расстоянии от 10 до 100 астрономических единиц. Удаленный планеты достаточно горячи поэтому изображение тяготеет к выбору звёзд. Ярким примером обнаружения стала планетарная система HR 8799. Ученые из NASA предполагают, что «Космический телескоп имени Джеймса Уэбба» с 6,5 метровым зеркалом сможет напрямую распознавать экзолпнеты и наличие у них атмосферы.

Типы экзопланет обнаруженных астрономами

Благодаря огромным размерам, такие газовые гиганты проще обнаружить у далеких звезд современными методами.

Первая планета газовый гигант «Горячий Юпитер», стала 51 Пегаса. Находится она в планетарной системе со спокойной звездой в 50 световых годах от Земли.

Первую планету, вращающуюся вокруг пульсара PRS B1257+12, обнаружили в 1994 году с помощью радиотелескопа с расстояния в 800 световых лет от Земли. Пульсар это не простая звезда, а быстровращающийся стробоскоп, образовавшийся после взрыва сверхновой. Предполагается, что зарождение жизни на таких планетах крайне мала т.к. экзопланеты находятся в зоне крайне высоких энергий излучаемых пульсаром.

Данные типы планет имею массу до 10 масс Земли. Первой такой обнаруженной планетой, стала пара планет возле звезды PSR B1257+12.

Предполагается, что планета Суперземля имеет чрезвычайно тектоническую активность. Астрономы из Гарвард-Смитсонсково университета разрабатывают теорию, что на таких планетах тонкие тектонические плиты.

Эксцентрические планеты

Солнечная система довольно четко сбалансирована. Планеты в ней вращаются по ровным орбитам. Обнаруженные эксцентрические странные планеты не вращаются по ровному кругу вокруг звезды. Их орбита то приближается к звезде, то удаляется.

Такие планеты имеют массу от 10 до 20 от массы Земли, то есть как Нептун или Уран. В отличии от «Холодного Нептуна» горячий Нептун находится ближе к звезде.

Такие планеты могут быть двух типов. Планета с жидкой водой покрытая полностью или почти полностью.

Вторым вариантом может быть планета океан как «Горячий Нептун» но расположенная ближе к звезде. Такое расположение не дает воде заледенеть. Толщина водяного слоя может достигать пару тысяч километров.

Такие планеты очень близко расположены к своим звездам, покрыты они раскаленным камнем и лавой. На их поверхностях происходит настоящий Ад. К примеру, обнаруженная планета Corot-7b ближе на 23 раза к звезде, чем наш Меркурий.

В основном планеты привязаны гравитацией к звездам, но есть теория, что под действием неких процессов или столкновений, планета может оторваться от своей звезды, и пустится в свободное плавание.

Настоящим кладом для астрономов стал поиск обитаемых планет. Благодаря современной аппаратуре, ученые обнаружили ряд звездных систем с планетами похожими на . К примеру звезда 55 Рака имеет 5 подтвержденных экзопланет , а удалена от нас на расстояние всего в 41 световой год.

Какие инструменты применяются для обнаружения подобных планет

В космосе.

Кеплер – космический телескоп, диаметр зеркала 0,95 м. Задача одновременно отслеживать 100 звезд;

COROT – специализированный космический телескоп с зеркалом 0,3 м. Задача следить за отблесками звезд Метод Доплера;

Gaia – космическая обсерватория. Введена в эксплуатацию в 2013 году для построения 3-х мерной карты галактики Млечный путь, предполагается работа по поиску обитаемых планет;

Некоторые планетные системы с экзопланетами

  • 51 Пегаса- первая солнцеподобная звезда главной последовательности, у которой была обнаружена экзопланета.
  • υ Андромеды- первая звезда главной последовательности, у которой была обнаружена многопланетная система.
  • Тау Кита- ближайшая из обнаруженных многопланетных систем (пять планет, открытие пока не подтверждено).
  • ε Эридана- не считая Солнца, это третье светило из ближайших звёзд с планетой, видимое без телескопа.
  • 55 Рака- на текущий момент у неё известно 5 планет, одна из которых - 55 Рака e, транзитная горячая суперземля размером 2 земных.
  • μ Жертвенника- имеет одну из самых маломассивных известных планет Мю Жертвенника c, возможно, принадлежащую к планетам земной группы.
  • γ Цефея- первая относительно тесная двойная звезда, у одной из компонентов которой была открыта планета Гамма Цефея A b.
  • Глизе 876- первый красный карлик, у которого была обнаружена планетная система.
  • HD 209458- содержит одну из самых примечательных планет - HD 209458 b («Осирис») - «испаряющуюся планету».
  • OGLE-TR-56- первая звезда, планета которой была открыта транзитным методом.
  • OGLE-235/MOA-53- первая экзопланета, обнаруженная благодаря эффекту гравитационного микролинзирования.
  • 2M1207- вероятно, первое полученное изображение экстрасолнечной планетной системы.
  • PSR 1257+12- пульсар, планетная система которого была первой из обнаруженных за пределами Солнечной системы. Одна из планет, предположительно, имеет массу всего в 0,025 земной.
  • HD 188753- первая тройная звёздная система, в которой была открыта планета (HD 188753 A b).
  • HD 189733- впервые в истории изучения экзопланет была составлена карта температур поверхности для планеты HD 189733 A b.
  • Глизе 581 c,Глизе 581 d, HD 85512 b и Kepler-22 b - из известных в настоящее время открытых планет, они достаточно схожи с Землёй.
  • KOI-961 d- наименьшая по массе (достоверной) из известных на данный момент (октябрь 2012), (<0,9 массы Земли).
  • WASP-17 b- первая обнаруженная планета, которая вращается вокруг звезды в направлении, противоположном вращению самой звезды.
  • COROT-7 b- первая суперземля (февраль 2009), обнаруженная транзитным методом и имеющая размер 1,58 размера Земли.
  • GJ 1214 b- первая планета-океан (теоретически).
  • HD 10180- звезда с максимальным числом открытых планет. На апрель 2012 года было обнаружено девять планет.
  • Глизе 581 g- планета с высокой вероятностью существования жидкой воды.
  • Kepler-10 b- первая железная планета (плотность планеты 8,8 г/см³).
  • Kepler-11- звезда, которая находится в созвездии Лебедя на расстоянии около 613 парсеков от нас. Вокруг звезды обращается, как минимум, 6 планет.
  • WASP-19 b- планета с периодом обращения вокруг звезды, равным 0,7888399 земных суток (18,932 часа).
  • WASP-33 b- самая горячая экзопланета из известных на 2011 год. Температура - 3200 °C.
  • WASP-43 bи GJ 1214 b - обладают самыми «тесными» орбитами. WASP-43 b - среди горячих юпитеров, GJ 1214 b - среди сверхземель. У WASP-43 b большая полуось 0,014 а. е. (2 млн км или 5 звездных радиусов). Родительская звезда WASP-43 - самая маломассивная звезда из всех, около которых вообще были обнаружены горячие гиганты. У GJ 1214 b большая полуось равна 0,014 ± 0,0019 а. е. (эксцентриситет орбиты меньше 0,27 - слабоэллиптическая орбита)
  • KIC 10905746 bи KIC 6185331 b - впервые экзопланеты открыты «любителями» среди массива данных, собранных «профессионалами» (проект Planet Hunters)
  • Kepler-20 eи Kepler-20 f - первые открытые экзопланеты размером с Землю и меньше, размеры Kepler-20 e составляют всего 0,87, а Kepler-20 f 1,03 радиуса Земли. Открыты телескопом Кеплер
  • KOI-961 b,KOI-961 c и KOI-961 d - экзопланета у красного карлика KOI-961, радиусом 0,78, 0,73 и 0,57 радиуса Земли. Радиус KOI-961 d чуть больше, чем у Марса (0,53 радиуса Земли) .
  • HD 37605 c- первый холодный юпитер, обнаруженный в 2012 году.
  • 47 Большой Медведицы- система, состоящая из 3 холодных юпитеров - 47 Большой Медведицы b, 47 Большой Медведицы c и 47 Большой Медведицы d.
  • GD 66 b- вероятно, первая гелиевая планета.

Послушаем его...

Здравствуйте, интересно было бы прочитать про экзопланеты доступным языком, способы их обнаружения, устройства телескопов для поиска экзопланет. Спасибо.

Очень интересно, лично я вообще ничего не знал о таком понятии. Давайте узнавать вместе...

Для начала поймем, что же это за планеты. Экзопланета - планета, находящаяся за пределами Солнечной системы (греческая приставка «экзо» означает «вне», «снаружи»), альтернативный термин - внесолнечная планета (extra solar planet). Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая — на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой.

Впервые такие планеты были обнаружены косвенно в 1990-х годах по слабому «покачиванию» звезд, вокруг которых они обращаются. К середине 2001 планетные системы были открыты у 58 близких к Солнцу звезд и двух радиопульсаров, причем в некоторых случаях обнаружены системы из нескольких планет, однако до сих пор ни одну из них не удалось непосредственно наблюдать и исследовать. Точное измерение движений звезды позволяет оценить массы наиболее крупных членов ее планетной системы и параметры их орбит. Не исключено, что некоторые экзопланеты не входят в околозвездные системы, подобные Солнечной системе, а движутся в межзвездном пространстве сами по себе.

Первое достоверное сообщение о наблюдении планеты, расположенной близ другой звезды, прозвучало в конце 1995 года. Всего через десять лет за это достижение была вручена «Нобелевская премия Востока» — награда сэра Ран Ран Шоу (Run Run Shaw). Гонконгский медиа-магнат уже третий год дарит по одному миллиону долларов ученым, достигшим особых успехов в астрономии, математике и науках о жизни, включая медицину. Лауреатами 2005 года по астрономии стали Мишель Майор из Женевского университета (Швейцария) и Джеффри Марси из Университета Калифорнии в Беркли (США), получившие премию на торжественной церемонии в Гонконге из рук самого ее учредителя — 98-летнего господина Шоу. За время, прошедшее после обнаружения первой экзопланеты, исследовательские группы, возглавляемые этими учеными, открыли десятки новых удаленных планет, причем на долю американских астрономов во главе с Марси пришлось 70 из первых 100 открытий. Этим они взяли своего рода реванш у швейцарской группы Майора, которая в 1995 году на два месяца опередила американцев с сообщением о самой первой экзопланете.

Технология идентификации

Первым разглядеть в телескоп планеты возле других звезд пытался голландский математик и астроном Христиан Гюйгенс еще в XVII веке. Однако он ничего не смог найти, поскольку эти объекты не видны даже в мощные современные телескопы. Находятся они невероятно далеко от наблюдателя, размеры их по сравнению со звездами невелики, отраженный свет — слабый. И, наконец, расположены они близко от своей родной звезды. Вот почему при наблюдениях с Земли заметен лишь ее яркий свет, а тусклые точки экзопланет просто «тонут» в его сиянии. Из-за этого планеты за пределами Солнечной системы долгое время оставались нераспознанными.

В 1995 году астрономы Мишель Майор и Дидье Келос из Женевского университета, проводя наблюдения на обсерватории Верхнего Прованса во Франции, впервые достоверно зафиксировали экзопланету. С помощью сверхточного спектрометра они обнаружили, что звезда 51 в созвездии Пегаса «покачивается» с периодом чуть более четырех земных суток. (Планета, обращаясь вокруг звезды, раскачивает ее своим гравитационным воздействием, в результате чего из-за эффекта Доплера можно наблюдать смещение спектра звезды.) Вскоре это открытие подтвердили и американские астрономы Джеффри Марси и Пол Батлер. В дальнейшем этим же методом анализа периодических изменений спектров звезд было обнаружено еще 180 экзопланет. Несколько планет было найдено так называемым фотометрическим методом — по периодическому изменению яркости звезды, когда планета оказывается между звездой и наблюдателем. Именно такой метод используется для поиска экзопланет на французском спутнике COROT, а также на американской станции Kepler.



Станция Кеплер

До сих пор нет надежной теории, объясняющей, каким образом формируются планетные системы звезд. На этот счет имеются лишь научные гипотезы. Наиболее распространенная из них предполагает, что Солнце и планеты возникли из единого газово-пылевого облака — вращающейся космической туманности. От латинского слова nebula («туманность») эта гипотеза получила название «небулярной». Как ни странно, она имеет довольно солидный возраст — два с половиной века. Начало современным представлениям о формировании планет было положено в 1755 году, когда в Кенигсберге вышла из печати книга «Всеобщая естественная история и теория неба». Она принадлежала перу безвестного 31-летнего выпускника Кенигсбергского университета Иммануила Канта, который был в то время домашним учителем у детей помещиков и преподавал в университете. Весьма вероятно, что идею происхождения планет из пылевого облака Кант почерпнул из книги, выпущенной в 1749 году шведским писателем-мистиком Эмануэлем Сведенборгом (1688—1772), который высказал гипотезу (по его словам, рассказанную ему ангелами) об образовании звезд в результате вихревого движения вещества космической туманности. Во всяком случае, известно, что довольно дорогую книгу Сведенборга, в которой излагалась эта гипотеза, купили лишь три частных лица, одним из которых был Кант. Впоследствии Кант прославится как родоначальник немецкой классической философии.

А вот книга о небе осталась малоизвестной, поскольку ее издатель вскоре обанкротился и почти весь тираж остался нераспроданным. Тем не менее гипотеза Канта о возникновении планет из пылевого облака — первоначального Хаоса — оказалась очень живучей и в последующие времена послужила основой для многих теоретических рассуждений. В 1796 году французский математик и астроном Пьер-Симон Лаплас, судя по всему незнакомый с работой Канта, выдвинул похожую гипотезу формирования планет Солнечной системы из газового облака и дал ее математическое обоснование. С тех пор гипотеза Канта — Лапласа стала ведущей космогонической гипотезой, объясняющей, как произошли наше Солнце и планеты. Представления о газово-пылевом зарождении Солнца и планет в последующем уточнялись и дополнялись в соответствии с новыми сведениями о свойствах и строении материи.

Сегодня предполагают, что формирование Солнца и планет началось около 10 миллиардов лет назад. Исходное облако состояло на 3/4 из водорода и на 1/4 из гелия, а доля всех остальных химических элементов была ничтожно малой. Вращающееся облако постепенно сжималось под действием сил гравитации. В его центре сосредоточилась основная масса вещества, которая постепенно уплотнилась до такого состояния, что началась термоядерная реакция с выделением большого количества тепла и света, то есть вспыхнула звезда — наше Солнце. Остатки газово-пылевого облака, вращаясь вокруг него, постепенно приобрели форму плоского диска. В нем стали возникать сгустки более плотного вещества, которые за миллиарды лет «слепились» в планеты. Причем сначала возникли планеты рядом с Солнцем. Это были сравнительно небольшие образования с высокой плотностью — железокаменные и каменные сферы — планеты земного типа. После этого в более удаленной от Солнца области сформировались планеты-гиганты, состоящие в основном из газов. Таким образом, исходный пылевой диск перестал существовать, превратившись в планетную систему. Несколько лет назад появилась гипотеза геолога академика А.А. Маракушева, по которой предполагается, что планеты земного типа в прошлом также были окружены обширными газовыми оболочками и выглядели как планеты-гиганты. Постепенно эти газы были унесены в окраинные области Солнечной системы, а близ Солнца остались лишь твердые ядра бывших планет-гигантов, которые и являются теперь планетами земного типа. Эта гипотеза перекликается с новейшими данными об экзопланетах, представляющих собой газовые шары, расположенные очень близко от своих звезд. Возможно, в будущем под влиянием нагрева и потоков звездного ветра (высокоскоростных частиц плазмы, испускаемых светилом) они тоже потеряют мощные атмосферы и превратятся в двойников Земли, Венеры и Марса.

Экзопланеты весьма необычны. Одни движутся по сильно вытянутым орбитам, что приводит к существенным изменениям температуры, другие из-за чрезвычайно близкого расположения к светилу постоянно раскалены до +1 200°С. Есть экзопланеты, делающие полный оборот вокруг своей звезды всего за двое земных суток, настолько быстро они движутся по своим орбитам. Над некоторыми сияют сразу два и даже три «солнца» — эти планеты вращаются вокруг звезд, входящих в систему из двух или трех светил, расположенных близко друг к другу. Столь разнообразные свойства экзопланет на первых порах просто ошеломили астрономов. Пришлось пересмотреть многие устоявшиеся теоретические модели образования планетных систем, ведь современные представления о формировании планет из протопланетного облака вещества основаны на особенностях строения Солнечной системы. Считается, что в наиболее жаркой области вблизи Солнца остались тугоплавкие материалы — металлы и каменные породы, из которых образовались планеты земного типа. Газы улетучились в более прохладную, удаленную область, где и сконденсировались в планеты-гиганты. Часть газов, которая оказалась на самом краю, в наиболее холодной области, превратилась в лед, сформировав множество крошечных планетоидов. Однако среди экзопланет наблюдается совсем иная картина: газовые гиганты расположены почти вплотную к своим звездам.

Большинство обнаруженных экзопланет являются гигантскими газовыми шарами, подобными Юпитеру, с типичной массой около 100 масс Земли. Их около 170, то есть 90% от общего количества. Среди них различают пять разновидностей. Наиболее распространены «водные гиганты», названные так из-за того, что, судя по расстоянию от звезды, их температура должна быть такой же, как на Земле. Поэтому естественно ожидать, что они окутаны облаками из водяного пара или ледяных кристаллов. А в целом эти 54 прохладных «водных гиганта» должны иметь вид голубовато-белых шаров. Следующими по распространенности идут 42 «горячих Юпитера». Они находятся совсем близко от своих звезд (в 10 раз ближе, чем Земля от Солнца), и поэтому их температура — от +700 до +1 200°С. Предполагается, что атмосфера у них коричневато-багрового цвета с темными полосами облаков из графитовой пыли. Немного прохладнее на 37 экзопланетах с атмосферой синевато-сиреневого оттенка, названных «теплыми Юпитерами», температура которых от +200 до +600°С. В еще более прохладных областях планетных систем расположены 19 «сернокислых гигантов». Предполагается, что они окутаны облачным покрывалом из капелек серной кислоты — таким, как на Венере. Соединения серы могут придавать этим планетам желтовато-белую окраску. Еще дальше от соответствующих звезд расположены уже упомянутые «водные гиганты», а в самых холодных областях находятся 13 «двойников Юпитера», которые по температуре аналогичны настоящему Юпитеру (от -100 до -200°С на внешней поверхности облачного слоя) и, наверное, выглядят примерно так же — с голубовато-белыми и бежевыми полосами облачности, в которые вкраплены белые и оранжевые пятна крупных вихрей.
Кроме гигантских газовых планет в последние два года найдено полтора десятка экзопланет поменьше. Они сравнимы по массе с «малыми гигантами» Солнечной системы — Ураном и Нептуном (от 6 до 20 масс Земли). Астрономы назвали этот тип «Нептунами». Среди них выделяются четыре разновидности. Наиболее часто встречаются «горячие Нептуны», их обнаружено девять. Они расположены очень близко к своим звездам и поэтому сильно нагреты. Найдено также два «холодных Нептуна», или «ледяных гиганта», — аналогичных Нептуну из Солнечной системы. Кроме того, к этому же типу отнесены и две «суперземли» — массивные планеты земного типа, не имеющие столь плотной и толстой атмосферы, как у планет-гигантов. Одна из «суперземель» считается «горячей», напоминающей по своим характеристикам планету Венера с весьма вероятной вулканической активностью. На другой же, «холодной», предполагают наличие водного океана, за что ее уже успели неофициально окрестить Океанидой. Вообще же экзопланеты пока не имеют собственных названий и обозначаются буквой латинского алфавита, добавляемой к номеру звезды, вокруг которой они вращаются. «Холодная суперземля» — наименьшая из экзопланет. Ее открыли в 2005 году в результате совместных исследований 73 астрономов из 12 стран. Наблюдения велись на шести обсерваториях — в Чили, ЮАР, Австралии, Новой Зеландии и на Гавайских островах. От нас до этой планеты чрезвычайно далеко— 20 000 световых лет.

Наибольший интерес, конечно, вызывают те экзопланеты, на которых возможно существование жизни. Чтобы целенаправленно начать искать в космосе «братьев по разуму», надо сначала найти планету с твердой поверхностью, на которой гипотетически они могли бы жить. Вряд ли инопланетяне летают внутри атмосфер газовых гигантов или плавают в глубинах океанов. Кроме твердой поверхности нужны еще и комфортная температура, а также отсутствие вредных излучений, несовместимых с жизнью (по крайней мере, с известными нам формами жизни). Пригодными для обитания считаются такие планеты, где есть вода. Поэтому средняя температура на их поверхности должна быть около 0°С (она может существенно отклоняться от этой величины, но не превышать +100°С). Например, средняя температура на поверхности Земли +15°С, а размах колебаний от -90 до +60°С. Области космоса с условиями, благоприятными для развития жизни в том виде, который известен нам на Земле, астрономы называют «зонами обитания». Планеты земного типа и их спутники, находящиеся в таких зонах, — это наиболее вероятные места проявления внеземных форм жизни. Возникновение благоприятных условий возможно в тех случаях, когда планета располагается сразу в двух зонах обитания — в околозвездной и галактической.

Околозвездная зона обитания (иногда ее называют также «экосфера») — это воображаемая сферическая оболочка вокруг звезды, в пределах которой температура на поверхности планет допускает наличие воды. Чем жарче звезда, тем дальше от нее находится такая зона. В нашей Солнечной системе такие условия есть только на Земле. Ближайшие к ней планеты, Венера и Марс, расположены как раз на границах этого слоя — Венера — на жаркой, а Марс — на холодной. Так что местоположение Земли весьма удачно. Окажись она ближе к Солнцу, океаны испарятся, а поверхность станет раскаленной пустыней. Дальше от Солнца — произойдет глобальное оледенение и Земля превратится в морозную пустыню. Галактическая зона обитания представляет собой ту область пространства, которая безопасна для проявления жизни. Такая область должна находиться достаточно близко к центру галактики, чтобы содержать много тяжелых химических элементов, необходимых для формирования каменных планет. В то же время эта область должна быть на определенном удалении от центра галактики, чтобы избежать радиационных всплесков, возникающих при взрывах сверхновых звезд, а также — губительных столкновений с многочисленными кометами и астероидами, которые могут быть вызваны гравитационным воздействием блуждающих звезд. Наша Галактика, Млечный Путь, имеет зону обитания на расстоянии примерно 25 000 световых лет от своего центра. И вновь нам повезло с тем, что Солнечная система оказалась в подходящей области Млечного Пути, в которую входят, как считают астрономы, лишь около 5% от всех звезд нашей Галактики.
Будущие поиски планет земного типа возле других звезд, планируемые с помощью космических станций, нацелены именно на такие благоприятные для жизни области. Это позволит существенно ограничить зону поиска и даст надежду на обнаружение жизни вне Земли. Список из 5 000 наиболее перспективных звезд уже составлен. Первоочередному изучению будут подвергнуты окрестности 30 звезд из этого списка, расположение которых считается наиболее благоприятным для возникновения жизни.

По массе все планеты делятся на 3 типа: гиганты (такие, как Юпитер и Сатурн), нептуны (такие, как Уран и Нептун) и планеты земного типа, или земли (такие, как Земля и Венера). Граница между гигантами и нептунами проходит по линии появления в недрах планет металлического водорода (около 60 масс Земли или 0.19 масс Юпитера). Граница между нептунами и землями довольно условно проведена по 7 массам Земли (просто потому, что Уран с его 14 массами Земли - еще явный нептун, а Земля - уже явно планета земного типа). Возможно, в интервале 3-10 масс Земли существуют планеты, чьи свойства резко отличаются как от свойств нептунов, так и от свойств планет земного типа, но пока они реально не открыты, не будем умножать сущности сверх необходимых.

Между планетами-гигантами, с одной стороны, и нептунами, с другой, существует много важных отличий помимо массы. Так, химический состав планет-гигантов близок к звездному химическому составу, т.е. они состоят преимущественно из водорода и гелия с небольшой (несколько процентов) примесью тяжелых элементов. Нептуны же состоят в основном из льдов (водяного льда, метана, аммиака и сероводорода) с заметной примесью скальных пород (силикатов и алюмосиликатов), количество водорода и гелия в их составе не превышает 15-20%. Наконец, планеты земного типа лишены не только водорода и гелия, но в значительной степени и льдов, и состоят в основном из силикатов с примесью железа.

Просуммируем свойства планет в зависимости от их массы.

1. Планеты-гиганты, масса в интервале от 0.19 до 13 масс Юпитера. Отличаются почти звездным химическим составом, т.е. состоят в основном из водорода и гелия. Быстро вращаются. Из-за колоссального давления в недрах планеты водород переходит в металлическую фазу (или, другими словами, становится вырожденным). Радиус планет, начиная от 0.3 масс Юпитера и до границы коричневых карликов (13 масс Юпитера), близок к радиусу Юпитера, или примерно в 10-11 раз превышает радиус Земли. Исключение составляют т.н. "горячие юпитеры" - планеты-гиганты, расположенные близко к своей звезде и имеющие эффективную температуру выше 1000К. Сильно нагретая светом близкой звезды, их атмосфера расширяется, увеличивая видимый радиус планеты до 1-1.4 радиуса Юпитера. Средняя плотность гигантов меняется от 0.28 г/куб.см (самые разреженные горячие юпитеры) до 12 г/куб.см (самые массивные планеты-гиганты в 10-12 масс Юпитера). Вторая космическая скорость этих планет превышает 37 км/сек и составляет обычно 45-70 км/сек. Скорее всего, все планеты-гиганты имеют сильное магнитное поле, усиливающееся с ростом массы планеты.
В Солнечной системе планеты-гиганты - Юпитер и Сатурн.

2. Нептуны, масса в интервале от 7 до 60 масс Земли (0.022 - 0.19 масс Юпитера). Состоят большей частью из льдов (водяного, аммиачного, метанового, сероводородного) и скальных пород, составляющих примерно четверть полной массы планеты. Доля водорода и гелия в составе планеты не превышает 15-20%. Давление в недрах недостаточно для перехода водорода в металлическую фазу. Радиус близок к 4 радиусам Земли. Средняя плотность составляет 1.3-2.2 г/куб.см., вторая космическая скорость 18-30 км/сек. Магнитное поле сильно отличается от дипольного (например, планета может иметь два северных и два южных полюса).
В Солнечной системе нептуны - Уран и Нептун.

3. Планеты земного типа, масса меньше 7 масс Земли. Состоят в основном из силикатов (скальная компонента) и железа. Средняя плотность 3.5-6 г/куб.см. Радиус меньше 2 радиусов Земли.
В Солнечной системе планеты земного типа - Меркурий, Венера, Земля и Марс.


А теперь давайте посмотрим ТОП-10 найденных экзопланет.

Первая планета за пределами нашей Солнечной системы была обнаружена астрономами в 1989 году. Это была PSR 1257+12 b, которая обращалась вокруг пульсара. За прошедшее время большинство обнаруженных экзопланет - а их более 500 - оказалось так называемыми горячими юпитерами, то есть газовыми гигантами, многие из которых находятся на орбитах очень близко к родным звёздам. Однако это естественно, так как существующие методы поиска внесолнечных планет основаны либо на сверхточном измерении колебания звезды под действием гравитации планет (метод лучевых скоростей), либо на фиксации изменений яркости звезды в момент прохождения планеты перед её диском (транзитный метод).Итак, открыто уже более 500 внесолнечных миров, где нет абсолютно одинаковых планет. Но в этом и есть прелесть нашей Вселенной, радующей нас буйством разнообразия. Предлагаем вам познакомиться с десятью самыми интересными, по мнению редакции сайта kosmos-x.net.ru, экзопланетами, обнаруженными астрономами.

Gliese 581g. Иллюстрация Zina Deretsky, National Science.


Gliese 581g - вращающаяся вокруг звезды Gliese 581 на расстоянии около 20 световых лет от Земли планета. Gliese 581g находится в «обитаемой зоне», то есть на таком расстоянии от звезды, что получает нужное количество звёздной энергии для существования на ней воды в жидком виде. Некоторые астрономы считают, что система Gliese 581 имеет не четыре, а шесть планет.

Dubbed TrES-4 . Иллюстрация Jeffrey Hall, Lowell Observatory.

Dubbed TrES-4 - газовый гигант на расстоянии 1400 световых лет от нас, вращающийся по очень близкой к своей звезде орбите и совершающий полный оборот вокруг неё всего за три дня. Имея диаметр, превышающий в 1,7 раза оный Юпитера, Dubbed TrES-4 относится к классу «разбухших» планет, которые имеют чрезвычайно низкую плотность.

Ипсилон Эридана b. NASA, ESA, G.F. Benedict (University of Texas, Austin).

Ипсилон Эридана b - экзопланета, обнаруженная у подобной Солнцу звезды ипсилон Эридана, которая находится на расстоянии всего 10,5 световых лет от Земли. Это так близко к нам, что в скором времени астрономы смогут сфотографировать её. Ипсилон Эридана b расположена слишком далеко от своей звезды, чтобы там могла существовать жидкая вода, однако учёные полагают, что это не единственная планета в системе ипсилон Эридана - в жилой зоне вполне могут быть другие миры.

CoRoT-7b. Иллюстрация ESO/L. Calcada.

CoRoT-7b является первым обнаруженным скалистым миром за пределами нашей Солнечной системы. Хотя в действительности это настоящий ад. Планета, которая находится на расстоянии 400 световых лет от нас, имеет радиус почти в пять раз больше, чем у Земли, и относится к классу «суперземель». Она расположена на очень близкой к родной звезде орбите (0,0172 астрономической единицы), и период её обращения составляет около 20 часов. Температура на освещённой стороне планеты чрезвычайно высока: около 2000 °C.

HD 188753 Ab. Иллюстрация NASA/JPL"s Planetquest/Caltech.

HD 188753 Ab - горячий газовый гигант, который ещё называют Татуин (вспомним фильм Дж. Лукаса «Звёздные войны»). Однако в отличие от восхитительного заката двух звёзд, который наблюдал юный Люк Скайуокер, на небосводе HD 188753 Ab можно увидеть три солнца, так как планета находится в системе трёх звезд на расстоянии примерно 149 световых лет от Земли. И ещё там довольно жарко, потому что она вращается очень близко к главной звезде, совершая оборот всего за 3,5 дня.

OGLE-2005-BLG-390L b. Иллюстрация ESO.

Экзопланета OGLE-2005-BLG-390L b с температурой поверхности -220 градусов °C является пока самым холодным миром из найденных астрономами. Имея диаметр в 5,5 раз больше, чем у Земли, OGLE-2005-BLG-390L B относится к классу «суперземель» и вращается по орбите вокруг красного карлика на расстоянии 28 000 световых лет от Земли.

WASP-12b. Иллюстрация ESA/NASA/Frederic Pont, Geneva University Observatory.

WASP-12b , как и большинство известных экзопланет, обнаруженных астрономами, является большим газообразным миром на расстоянии около 870 световых лет от Земли. Экзопланета почти в два раза больше Юпитера. WASP-12b вращается вокруг своей звезды на очень близком расстоянии - немногим более 1,5 миллиона километров - и является самой горячей планетой, с температурой поверхности около 2200 °C.

SWEEPS-10. Иллюстрация NASA.

SWEEPS-10 - экзопланета, имеющая самый малый период обращения вокруг звезды из известных учёным: один оборот она совершает всего за 10 часов. Находится на расстоянии около 22 000 световых лет от Земли.

Coku Tau 4. Иллюстрация NASA .


Coku Tau 4 - одна из самых молодых экзопланет, возраст которой составляет менее 1 миллиона лет. Она находится на расстоянии около 420 световых лет от Земли. Астрономы сделали вывод о существовании этой планеты, обнаружив дыру в пылевом диске, опоясывающем звезду. Дыра, размером в 10 раз превышающая Землю, вращается вокруг звезды и образуется, вероятно, вследствие вращения планеты, очищающей пространство вокруг себя от пыли и газа.

HD 209458 b. Иллюстрация NASA, ESA, and G. Bacon (STScI).


HD 209458 b (Озирис) - планета-комета, находящаяся на расстоянии 153 световых лет от Земли. Она весит чуть меньше Юпитера и совершает полный оборот вокруг звезды всего за 3,5 дня. У Озириса был обнаружен длинный шлейф из газа его же атмосферы. Анализ этого «хвоста» показал, что в нём присутствуют и лёгкие и тяжёлые элементы (такие как углерод и кремний). При этом температура атмосферы составляет около 1 226 градусов Цельсия. Это позволило учёным предположить, что планета до такой степени разогрета своей звездой, что даже тяжёлые элементы могут покидать её атмосферу.

Как же ищут такие планеты?

Предположим, что наблюдатель находится у ближайшей к нам звезды Альфа Кентавра и смотрит в сторону Солнечной системы. Тогда наше Солнце будет сиять для него так же ярко, как звезда Вега на земном небосводе. А блеск планет окажется очень слабым: Юпитер будет «звездочкой» 23 звездной величины, Венера - 24 величины, а Земля и Сатурн - 25 величины. Вообще говоря, крупнейшие современные телескопы могли бы заметить такие слабые объекты, если бы на небе рядом с ними не было ярких звезд. Но для далекого наблюдателя Солнце всегда расположено рядом с планетами: для астронома с Альфы Кентавра угловое расстояние Юпитера от Солнца не превосходит 4 угловых секунд, а между Венерой и Солнцем всего 0,5 угл. сек. Для современных телескопов заметить предельно слабое светило так близко от яркой звезды - задача непосильная. Астрономы сейчас проектируют приборы, которые смогут решить эту задачу. Например, изображение яркой звезды можно закрыть специальным экраном, чтобы ее свет не мешал изучать находящуюся рядом планету. Такой прибор называют «звездным коронографом»; по конструкции он похож на солнечный внезатменный коронограф Лио. Другой метод предполагает «гашение» света звезды за счет эффекта интерференции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами - так называемым «звездным интерферометром». Поскольку звезда и расположенная рядом с ней планета наблюдаются в чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между телескопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света звезды и, одновременно, усиления света планеты. Оба описанных прибора - коронограф и интерферометр - очень чувствительны к влиянию земной атмосферы, поэтому для успешной работы их, по-видимому, придется доставить на околоземную орбиту.

Есть еще такие методы, как
- Измерение яркости звезды
- Измерение положения звезды
- Измерение скорости звезды
- Астрометрический поиск

Поиском экзопланет сейчас занято более 150 астрономов на различных обсерваториях мира, включая самую продуктивную научную группу Дж.Марси и группу М.Майора. Для выработки терминологии и координации усилий в этой области Международный астрономический союз (МАС) создал Рабочую группу по внесолнечным планетам (см. http://www.ciw.edu/IAU/div3/wgesp/), первым руководителем которой избран американский астроном-теоретик Алан Бос (A.Boss). Предложена временная терминология, согласно которой «планетой» следует называть тело массой менее 13 Мю, обращающееся вокруг звезды солнечного типа; такие же объекты, но свободно движущиеся в межзвездном пространстве, следует называть «коричневыми субкарликами» (sub-brown dwarfs). Сейчас этот термин употребляется в отношении нескольких десятков предельно слабых объектов, найденных в 2000-2001 в туманности Ориона и не связанных со звездами. Они излучают в основном в инфракрасном диапазоне и по массе, вероятно, лежат в промежутке между коричневыми карликами и планетами-гигантами. Ничего определенного о них пока сказать нельзя.

В 2013 году по совместному проекту США, Канады и Европы планируется запуск крупного космического телескопа JWST (James Webb Space Telescope). Этот гигант с зеркалом диаметром 6 метров, носящий имя бывшего директора NASA, призван заменить ветерана космической астрономии — телескоп «Хаббл». В числе его задач будет и поиск планет вне Солнечной системы. В том же году предстоит запуск комплекса из двух автоматических станций TPF (Terrestrial Planet Finder — «Поисковик планет земного типа»), предназначенного исключительно для наблюдений за атмосферами экзопланет, сходных с нашей Землей. С помощью этой космической обсерватории намечено искать обитаемые планеты, анализируя спектры их газовых оболочек для выявления водяного пара, углекислого газа и озона — газов, указывающих на возможность жизни. Наконец, в 2015 году Европейское космическое агентство отправит в космос целую флотилию телескопов Darwin, предназначенных для поиска признаков жизни вне Солнечной системы путем анализа состава атмосфер экзопланет.

Если космические исследования экзопланет пойдут по намеченным планам, то уже лет через десять можно ожидать первых надежных известий о планетах, благоприятных для жизни — данных о составе атмосфер вокруг них и даже сведений о строении их поверхностей.

В целом обнаружение первых внесолнечных планетных систем стало одним из крупнейших научных достижений 20 столетия. Решена важнейшая проблема - Солнечная система не уникальна; формирование планет рядом со звездами - это закономерный этап их эволюции. В то же время становится ясно, что Солнечная система нетипична: ее планеты-гиганты, движущиеся по круговым орбитам вне «зоны жизни» (область умеренных температур вокруг Солнца), позволяют длительное время существовать в этой зоне планетам земного типа, одна из которых - Земля - имеет биосферу. По-видимому, другие планетные системы редко обладают этим качеством.

совершить экскурсию по МКС



Понравилась статья? Поделиться с друзьями: