Жидкие горючие вещества воспламеняются или возгораются. Пожар класса «В» - горение жидких веществ

Для создания НКПРП паров над поверхностью жидкости достаточно нагреть до температуры, равной НТПРП, не всю массу жид­кости, а лишь только ее поверхностный слой.

При наличии ИЗ такая смесь будет способ­на к воспламенению. На практике чаще всего используются понятия температура вспышки и воспламенения.

Под температурой вспышки понимают наименьшую темпера­туру жидкости, при которой над ее поверхностью в условиях спе­циальных испытаний образуется концентрация паров жидкости, способная к воспламенению от ИЗ, но скорость их образования недостаточна для последующего горения. Таким образом, как при температуре вспышки, так и при нижнем тем­пературном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае HKПРП создается насыщенными пара­ми. Поэтому температура вспышки всегда несколько выше, чем НТПРП. Хотя при температуре вспышки имеет место кратковременное воспламенение паров в воздухе, которое не спо­собно перейти в устойчивое горение жидкости, тем не менее при определенных условиях вспышка паров жидкости способна явить­ся источником возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспыш­ки в закрытом тигле 61 0 С или в открытом 65 0 С и ниже, к ГЖ – с температурой вспышки в закрытом тигле более 61 0 С или в открытом тигле 65 0 С.

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или от -13 до 27 0 С в открытом тигле;

III разряд – ЛВЖ, опасные при повышенной темпе­ратуре воздуха, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от 23 до 61 0 С в закрытом тигле или от 27 до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавли­вают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. Темпе­ратура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменени­ем физических свойств членов гомологического ряда (табл. 4.1).

Таблица 4.1.

Физические свойства спиртов

Молекулярная

Плот-ность,

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н-Пропиловый С 3 Н 7 ОН

н-Бутиловый С 4 Н 9 ОН

н-Амиловый С 5 Н 11 ОН

Температура вспышки повышается с увеличением молекулярной массы, темпе­ратуры кипения и плотности. Эти закономерности в го­мологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо от­метить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространятьна жидкости, принадлежащие к разным классам органических соединений.

При смешении горючих жидкостей с водой или четы-реххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки (см. табл. 4.2).

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25 %.

Таблица 4.2.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения. Такую температуру жидкости принято называть температурой воспламенения . Для ЛВЖ она отличается на 1-5 0 С от температуры вспышки, а для ГЖ – на 30-35 0 С. При температуре воспламенения жидко­стей устанавливается постоянный (стационарный) про­цесс горения.

Между температурой вспышки в закрытом тигле и нижним тем­пературным пределом воспламенения имеется корреляционная связь, описываемая формулой:

Т вс – Т н.п. = 0,125Т вс + 2. (4.4)

Это соотношение справедливо при Т вс < 433 К (160 0 С).

Существенная зависимость температур вспышки и воспламене­ния от условия эксперимента вызывает определенные трудности при создании расчетного метода оценки их величин. Одним из наиболее распространенных из них является полуэмпирический метод, предложенный В. И. Блиновым:

, (4.5)

где Т вс – температура вспышки, (воспламенения), К;

р вс – парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па;

D 0 – коэффициент диффузии паров жидкости, м 2 /с;

n – количество молекул кислорода, необходимое для пол­ного окисления одной молекулы горючего;

Лекция 13

ГОРЕНИЕ ЖИДКОСТЕЙ

Потребление жидкого топлива в мировом хозяйстве достигает б настоящее время гигантских масштабов и продолжает неуклонно расти. Это приводит к постоянному развитию нефтедобывающей и нефтеперерабатывающей промышленности.

Жидкое топливо превратилось в настоящее время в важнейшее стратегическое сырье, и это обстоятельство приводит к необходимости создания громадных его запасов. Обеспечение пожарной безопасности при добыче, транспортировке, переработке и хранении жидкого топлива является важнейшей задачей органов пожарной охраны .

Воспламенение жидкости

Важнейшим свойством жидкости является ее способность к испарению. В результате теплового движения часть молекул, преодолевая силы поверхностного натяжения жидкости, переходит в газовую зону, образуя над поверхностью ЛВЖ, ГЖ паровоздушную смесь. За счет броуновского движения в газовой зоне имеет место и обратный процесс - конденсация. Если объем над жидкостью замкнутый, то при любой температуре жидкости устанавливается динамическое равновесие между процессами испарения и конденсации.

Таким образом, над поверхностью (зеркалом) жидкости всегда существует паровоздушная смесь, которая в состоянии равновесия характеризуется давлением насыщенных паров жидкости или их концентрацией. С ростом температуры давление насыщенных паров возрастает согласно уравнению Клайперона-Клазиуса:

где рнп - давление насыщенного пара, Па;

Qисп - теплота испарения - количество тепла, необходимое для перевода в парообразное состояние единицы массы жидкости, кДж/моль;

Т - температура жидкости, К.

Из (7.1) следует, что с увеличением температуры жидкости давление насыщенных паров (или их концентрация) возрастают экспоненциально (рис. 7.1). Таким образом, для любой жидкости всегда существует такой интервал температур, при котором кон­центрация насыщенных паров над зеркалом будет находиться в области воспламенения, т. е. HKJIB <ф п< ВКПВ

https://pandia.ru/text/80/195/images/image003_159.jpg" width="350" height="43 src=">

где Твс - температура вспышки (воспламенения), К;

Рвс - парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па;

п - количество молекул кислорода, необходимое для полного окисления одной молекулы горючего;

В - константа метода определения.

Распространение пламени по поверхности жидкости.

Анализ влияния условий горения на скорость распространения пламени

Свойство пламени к самопроизвольному распространению имеет место не только в случае горения смесей горючих газов с окислителем, но и при горении жидкостей и твердых веществ. При локальном воздействии тепловым источником, например открытым пламенем, жидкость будет прогреваться, возрастет скорость испарения и при достижении поверхностью жидкости температуры воспламенения в месте воздействия источника произойдет зажигание паровоздушной смеси и установится устойчивое пламя, которое затем с определенной скоростью будет распространяться по поверхности холодной жидкости.

Что же является движущей силой распространения процесса горения и каков его механизм?

Распространение пламени по поверхности жидкости протекает в результате теплопередачи излучением, конвекцией и молекулярной теплопроводностью от зоны пламени к поверхности зеркала жидкости.

Основную роль в этом по современным представлениям играет теплоизлучение от пламени. Пламя, обладая высокой температурой (более 1000°С), способно, как известно, излучать тепловую энергию . Согласно закону Стефана-Больцмана, интенсивность лучистого теплового потока, отдаваемого нагретым телом, определяется соотношением:

где ε - степень черноты,

σ - постоянная Стефана - Больцмана, = 2079 ´ 10-7 кдж/(м2 ч К4)

T ф, T ж - t факела и поверхности жидкости, К

Это тепло расходуется на испарение (q1 ) и прогрев (q11 ) жидкости в глубину.

Qф = q1 +q11 = r ´ r ´ W + r ´ U ´ (Tж - T0) ´ c, где

r - теплота испарения, кдж/г

r - плотность, г/см3

W - линейная скорость выгорания, мм/ч

U - скорость прогрева в глубину, мм/ч

T0 - начальная т-ра жидкости, К

с - удельная теплоёмкость жидкости, дж/(г К)

Максимальная температура жидкости равна t её кипения.

В установившемся процессе горения наблюдается равновесие между скоростью испарения и скоростью выгорания.

Верхний слой жидкости нагревается до более высокой температуры, чем нижние. Температура у стенок выше, чем в середине резервуара.

Таким образом, скорость распространения пламени по жидкости, т. е. путь, пройденный пламенем в единицу времени, определяется скоростью прогрева поверхности жидкости, под воздействием лучистого теплового потока от пламени, т. е. скоростью образования горючей паровоздушной смеси над зеркалом жидкости.

Вода резко снижает температуру кипения нефти, мазута. При горении нефти, содержащей воду, происходит вскипание воды, что приводит к переливанию горящей жидкости через борт резервуара (т. наз. вскипание горящей жидкости.

Над поверхностью же открытого резервуара концентрация паров по высоте будет различной: у поверхности она будет максимальной и соответствовать кон­центрации насыщенного пара при данной температуре, а по мере подъема над поверхностью постепенно снижается вследствие конвективного и молекулярного уноса (рис, 7.3).

Таким образом, над поверхностью зеркала жидкости в открытом резервуаре при любой начальной температуре жидкости выше, чем Тст , будет находиться область, в которой концентрация паров в воздухе будет стехиометрической. При температуре жидкости Т2 эта концентрация будет находиться на высоте Ну от поверхности жидкости, а при температуре Т3, большей Т2, - на расстоянии Н ^Зст. При температуре, близкой к температуре вспышки жидкости ТВ распространение пламени по поверхности жидкости будет равной скорости его распространения по смеси паров в воздухе, на НКПВ, т. е. З-4см/с. При этом фронт пламени будет расположен у поверхности жидкости. При дальнейшем увеличении начальной температуры скорость распространения пламени по жидкости будет возрастать аналогично изменению нормальной скорости распространения пламени по паровоздушной смеси с увеличением ее концентрации.

Лекция 14

Скорость выгорания жидкостей, влияющие факторы.

При определённой температуре, выше tвс, раз подожжённая жидкость продолжает гореть после удаления источника зажигания. Такая минимальная температура называется температурой воспламенения (tвос). Для ЛВЖ она выше tвс на 1-5 оС, для ГЖ - на 30-35 оС.

Линейная скорость выгорания - высота столба жидкости, выгорающая в единицу времени:

Массовая скорость выгорания - масса жидкости, выгорающая в единицу времени с единицы площади поверхности:

Между линейной и массовой скоростями горения существует зависимость:

(следует следить за размерностями величин и при необходимости вводить поправочный коэффициент).

Прогрев жидкости по глубине. Нагрев поверхности жидкости лучистым потоком от пламени сопровождается передачей тепла вглубь ее. Этот теплоперенос осуществляется в основном тепло­проводностью и ламинарной конвекцией за счет движения нагре­тых и холодных слоев жидкости. Прогрев жидкости теплопровод­ностью осуществляется на небольшую глубину (2-5 см) и может быть описан уравнением вида

где Тх - температура слоя жидкости на глубине х, К;

Тк - температура поверхности (температура кипения), К; к - коэффициент пропорциональности, м-К

Этот тип температурного поля называется распределением тем­пературы первого рода.

Ламинарная конвекция возникает в результате различной тем­пературы жидкости у стенок резервуара и в его центре, а также вследствие фракционной разгонки в верхнем слое при горении смесей. Дополнительная передача тепла от нагретых стенок ре­зервуара к жидкости приводит к прогреву ее слоев у стенок до более высокой температуры, чем в центре. Более нагретая у стенок жидкость (или даже пузырьки пара в случае ее перегрева у сте­нок выше температуры кипения) поднимается вверх, что способ­ствует интенсивному перемешиванию и быстрому прогреву слоя жидкости на большую глубину. Образуется так называемый гомотермический слой, т. е. слой с практически постоянной темпе­ратурой, толщина которого растет во времени горения. Такое температурное поле называют распределением температуры второго рода (рис. 7.7). Образование гомотермического слоя воз­можно также и в результате фракционной перегонки приповерх­ностных слоев смесей жидкостей, имеющих различную температу­ру кипения. По мере выгорания таких жидкостей приповерхност­ный слой обогащается более плотными высококипящими фракциями, которые опускаются вниз, способствуя тем самым конвек­тивному прогреву жидкости.

Определяющее влияние перегрева жидкости у стенок резервуа­ра на формирование гомотермического слоя подтверждают сле­дующие экспериментальные данные. При горении бензина в ре­зервуаре диаметром 2,64 мм без охлаждения стенок приводило к достаточно быстрому образованию гомотермического слоя. При интенсивном охлаждении стенок прогрев жидкости на глубину осуществлялся главным образом теплопроводностью и в процес­се всего времени горения имело место распределение температу­ры первого рода. Установлено, что чем выше температура кипе­ния жидкости (дизельное топливо, трансформаторное масло), тем труднее образуется гомотермический слой. При их горении темпе­ратура стенок резервуара редко превышает температуру кипения. Однако при горении влажных высококипящих нефтепродуктов вероятность образования гомотермического слоя также высока. При прогреве стенок резервуара до 100°С и выше образуются пу­зырьки водяного пара, которые, устремляясь вверх, вызывают интенсивное перемешивание всей жидкости и быстрый прогрев вглубину. Возможность образования достаточно толстого гомотермического слоя при горении влажных нефтепродуктов чревата явле­ниями вскипания и выброса жидкости.

Исходя из рассмотренных выше представлений о механизме выгорания жидкости, проанализируем влияние некоторых факто­ров на массовую скорость.

Скорость выгорания зависит от: рода жидкости, температуры, диаметра резервуара, уровня жидкости, скорости ветра.

Для горелок малых диаметров скорость сгорания сравнительно велика. При увеличении диаметра скорость сначала снижается из-за нагрева от стенок, затем возрастает, т. к. ламинарное горение переходит в турбулентное и остаётся постоянным при диаметрах ³ 2 м.

При турбулентном горении ниже полнота горения (появляется копоть), увеличивается тепловой поток от пламени, быстрее отводятся пары, увеличивается скорость испарения.

При снижении уровня жидкости затрудняются процессы тепломассопереноса (отток продуктов горения, приток окислителя, пламя удаляется от поверхности жидкости), поэтому скорость горения падает и при определённом расстоянии жидкости от верхнего борта резервуара (критическая высота самотушения) горение становится невозможным. Критическая высота самотушения при Æ = 23 м равна 1 км (реальная высота резервуара= 12 м).

Оценив доли тепла от общего тепловыделения при горении жидкости, которая затрачивается на ее подготовку следует, что менее 2% от общего тепловыделения при горении жидкости затрачивается на поставку ее паров в зону горения. В момент установления процесса выгора­ния температура поверхности жидкости резко возрастает от тем­пературы воспламенения до температуры кипения, которая в дальнейшем по мере выгорания остается неизменной. Однако это справедливо только для индивидуальных жидкостей. В процессе горения смеси жидкостей, имеющих разную температуру кипения (бензины, нефть и т. д.), происходит как бы их фракционная перегонка. Вначале происходит выход легкокипящих фракций, затем всех более высококипящих. Этот процесс сопровождается постепенным (квазистациоиарным) повышением температуры на поверхности жидкости. Влажное горючее может быть представлено как смесь двух жидкостей (горючее + вода), в процессе горения которых проис­ходит их фракционная разгонка. Если температура кипения горю­чей жидкости меньше температуры кипения воды (100°С), то происходит преимущественное выгорание горючего, смесь обога­щается водой, скорость выгорания снижается и, наконец, горение прекращается. Если температура кипения жидкости больше 100°С, напротив, вначале преимущественно испаряется влага, концентрация ее снижается: скорость выгорания жидкости возрастает, вплоть до скорости горения чистого продукта (рис. 7.11).

Влияние скорости ветра. Как правило, с повышением скорости ветра скорость выгорания жидкости увеличивается. Ветер интенси­фицирует процесс смешения горючего с окислителем, повышая температуру пламени и приближая пламя к поверхно­сти горения.

Все это повышает интенсивность теплового потока, поступаю­щего на нагрев и испарение жидкости, следовательно, приводит к росту скорости выгорания. При большей скорости ветра пламя может срываться, что приведет к прекращению горения. Так,- на­пример, при горении тракторного керосина в резервуаре диамет­ром З"М наступал срыв пламени при достижении скорости ветра 22 м-с-1.

Влияние концентрации кислорода в атмосфере. Большинство жидкостей не способны к горению в атмосфере с содержанием кислорода менее 15%. С повышением концентрации кислорода выше этого предела скорость выгорания возрастает (рис. 7.12). В атмосфере, обогащенной кислородом, горение жидкости проте­кает с выделением большого количества сажи в пламени и на­блюдается интенсивное кипение жидкой фазы. Для многокомпо­нентных жидкостей (бензин, керосин и т. п.) температура поверх­ности с увеличением содержания кислорода в окружающей среде возрастает (рис. 7.13).

Повышение скорости выгорания и температуры поверхности жидкости с ростом концентрации кислорода в атмосфере обусловлено увеличением излучающей способности пламени в результате роста температуры горения и высокого содержания сажи в нем.

Взрыво- и пожароопасность веществ зависит от их агрегат­ного состояния (газообразные, жидкие, твердые), физико-хими­ческих свойств, условий хранения и применения.

Основными показателями, характеризующими пожарную опасность горючих газов являются концентрационные пределы воспламенения, энергия зажигания, температура горения, нор­мальная скорость распространения пламени и др.

Горение смеси газа с воздухом возможно в определен­ных пределах, называемых концентрационными пределами воспламенения. Минимальные и максимальные концентрации горючих газов в воздухе, способные воспламеняться, называются соответственно нижним и верхним концентрационными предела­ми воспламенения.

Энергия зажигания определяется минимальной энергией искры электрического разряда, воспламеняющей данную газовоз­душную смесь. Величина энергии зажигания зависит от природы газа и концентрации. Энергия зажигания являет­ся одной из основных характеристик взрывоопасных сред при решении вопросов обеспечения взрывобезопасности электрообору­дования и разработке мероприятий по предупреждению образова­ния статического электричества.

Температура горения - это температура продукта химиче­ской реакции при горении смеси без тепловых потерь. Она зави­сит от природы горючего газа и концентрации его смеси. Наи­большая температура горения для большинства горючих газов составляет 1600-2000 °С.

Нормальной скоростью распространения пламени называет­ся скорость, с которой движется граничная поверхность между сгоревшей и несгоревшей частями смеси относительно несгорев­шей. Численно нормальная скорость пламени равна количеству (объему) горючей смеси, выгорающей на единице площади пламе­ни в единицу времени. Нормальная скорость пламени зависит от природы газа и концентрации его смеси. Для большинства горю­чих газов нормальная скорость пламени находится в пределах 0,3-0,8 м/с.

Нормальная скорость пламени является одной из основных физико-химических характеристик, определяющих свойства сме­си, и определяющих скорость сгорания и соответственно время взрыва. Чем больше нормальная скорость пламени, тем меньше время взрыва и тем более жесткие его параметры.

Горение легковоспламеняющихся и горючих жидкостей происходит только в паровой фазе . Горение паров в воздухе, также как и газов, возможно и в определенном диапазоне концентраций. Так как Максимально возможное содержание пара в воздухе не может быть больше, чем в состоянии насыщения, то концентрационные пределы воспламенения могут быть выражены через температуру. Значения температуры жидкости, при которых концентрация насыщенных паров в воздухе над жидкостью равна концентрацион­ным пределам воспламенения, называется температурными пре­делами воспламенения (нижним и верхним соответственно).

Таким образом, для воспламенения и горения жидкости не­обходимо, чтобы жидкость была нагрета до температуры, не меньшей, чем нижний температурный предел воспламенения. После воспламенения скорость испарения должна быть достаточной для поддержания постоянного горения. Эти особенности горения жидкостей характеризуются температурами вспышки и воспла­менения.

Температурой вспышки называется наименьшее значение температуры жидкости, при которой над ее поверхностью образу­ется паровоздушная смесь, способная вспыхивать от постороннего источника зажигания. При этом устойчивого горения жидкости не возникает.

По температуре вспышки жидкости делятся на легковос­пламеняющиеся (ЛВЖ),. температура вспышки которых не пре­вышает 45 °С (спирты, ацетон, бензин и др.) и горючие (ГЖ), температура вспышки которых более 45 °С (масла, мазуты, гли­церин и др.).

Температурой воспламенения называется наименьшее значение температуры жидкости, при которой интенсивность ис­парения ее такова, что после зажигания внешним источником возникает самостоятельное пламенное горение. Для ЛВЖ темпе­ратура воспламенения обычно на 1-5 °С выше температуры вспышки, а для ГЖ эта разница может достигать 30-35 °С.

Паровоздушные смеси, также как и газовоздушные, явля­ются взрывоопасными. Их взрывоопасность характеризуется па­раметрами, определяющими взрывоопасность газовоздушных сме­сей, - энергией зажигания, температурой горения, нормальной скоростью распространения пламени и др.

Пожарная опасность твердых горючих веществ и материа­лов характеризуется теплотворной способностью 1 кг вещества, температурами горения, самовоспламенения и воспламенения, скоростью выгорания и распространения горения по поверхности материалов.

Пожаро- и взрывоопасные свойства пылей определяются концентрациями пылевоздушной смеси, наличия источника за­жигания с достаточной тепловой энергией, размера пылинок и др.

Мелкие частицы твердых горючих веществ размеров 10~5-10~7 см могут долгое время находиться в воздухе во взвешен­ном состоянии, образуя дисперсную систему - аэровзвесь. Для воспламенения аэровзвеси необходимо, чтобы концентрация пыли в воздухе была не менее нижнего концентрационного предела воспламенения. Верхний концентрационный предел воспламене­ния пылевоздушной смеси в большинстве случаев является очень высоким и трудно достижимым (для торфяной пыли - 2200 г/м3, сахарной пудры - 1350 г/м3).

Тепловая энергия источника зажигания для воспламенения пылевоздушной смеси должна быть порядка нескольких МДж и более.

В зависимости от значения нижнего концентрационного предела воспламенения пыли подразделяются на взрывоопасные и пожароопасные. К взрывоопасным относятся пыли с нижним концентрационным пределом воспламенения до 65 г/м3 (пыль се­ры, сахара, муки), а пожароопасным - пыли с нижним пределом воспламенения выше 65 г/м3 (табачная и древесная пыль).

Пожарную опасность веществ и материалов характеризуют; и такие свойства как склонность некоторых веществ и материалов к электризации и самовозгоранию при соприкосновении с возду­хом (фосфор, сернистые металлы и др.). водой (натрий, калий, карбид кальция и др.) и друг с другом (метан + хлор, азотная ки­слота + древесные опилки и т.д.).

Пожарная опасность негорючих веществ и материалов опре­деляется температурой, при которой они обрабатываются, воз­можностью выделения искр, пламени, лучистого тепла, а также потерей несущей способности и разрушением.

Горением называют химическую реакцию окисления вещества, сопровождающуюся выделением большого количества тепла и обычно ярким свечением (пламенем). Процесс горения возможен при наличии трех факторов: горючего вещества, окислителя и источника загорания (импульса). Окислителями могут быть кислород, хлор, фтор, бром, йод, окислы азота.

Горение может возникнуть в результате вспышки, возгорания, воспламенения, самовозгорания, самовоспламенения или взрыва горючего вещества.

Вспышка представляет собой быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов при внесении в нее источника зажигания. При этом для продолжения горения оказывается недостаточным то количество тепла, которое образуется при кратковременном процессе вспышки.

Возгорание – явление возникновения горения под действием источника зажигания. Источниками зажигания могут быть пламя, лучистая энергия, искра, накаленная поверхность и т.п.

Воспламенение – это возгорание, сопровождающееся появлением пламени. В отличие от вспышки количество тепла при воспламенении, переданное горючему веществу от источника зажигания, достаточно для продолжения горения, т.е. для своевременного образования паров и газов над поверхностью вещества, способных гореть.

При этом вся остальная масса горючего вещества остается относительно холодной.

Самовозгорание явление резкого увеличения скорости окисления вещества, приводящее к возникновению горения в отсутствие источника зажигания. Окисление проходит вследствие адсорбции кислорода воздуха и постоянного нагрева вещества за счет тепла химической реакции окисления. Самовозгораться могут обтирочные материалы, пропитанные техническим маслом, торф, каменный уголь и др.

Самовоспламенение – это самовозгорание, сопровождающееся появлением пламени.

Взрыв (взрывное горение) – это горение вещества, сопровождающееся крайне быстрым выделением большого количества энергии, вызывающего нагрев продуктов сгорания до высоких температур и резкое повышение давление.

Пожаром называют неконтролируемое горение вне специального очага.

Ингибирование – интенсивное замедление скорости химических реакций окисления в пламени.

Все горючие вещества могут находиться в жидком, газообразном и твердом состоянии.

Горючие жидкости. Основными параметрами горючих свойств жидкости являются температуры вспышки, воспламенения и самовоспламенения, а также концентрационные и температурные пределы воспламенения смеси паров жидкости с воздухом.

Температура вспышки – один из основных признаков, определяющих пожароопасность жидкостей.

Жидкости в зависимости от температуры вспышки паров подразделяются на два класса:

1. легковоспламеняющиеся жидкости (ЛВЖ) с температурой вспышки не выше 61*С (в закрытом тигле) или 66*С (в открытом тигле). Такими жидкостями являются, например, бензин, ацетон и др.;

2. горючие жидкости (ГЖ) с температурой вспышки выше 61*С (в закрытом тигле), например, масло, мазут и др.

Температурой воспламенения называют температуру горючего вещества, при которой оно выделяет горючие газы и пары с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение.

Температура самовоспламенения имеет большое значение для оценки взрывоопасности процессов, протекающих под давлением в закрытых сосудах. Она характеризует возможность начала пламенного горения вещества при контакте его с кислородом воздуха.

Наиболее опасными являются жидкости с температурой самовоспламенения менее 15*С

Смесь горючих веществ с окислителем способна гореть только при определенном содержании в ней горючего. Нижним (верхним) концентрационнымпределомвоспламенения называют минимальное (максимальное) возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Температурные пределы воспламенения – это такие температуры горючего вещества, при которых его насыщенные пары образуют в конкретной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения.

Горючие газы. Основными параметрами взрывоопасности горючих газов являются нижний и верхний концентрационные пределы воспламенения, характеризуемые объемной долей горючих газов в смеси (%).Промежуток между нижним и верхним концентрационными пределами называют областью воспламенения. Только в этой области смесь способна воспламеняться от источника зажигания с последующим распространением пламени. Например, нижний и верхний пределы воспламенения в смеси с воздухом составляют (в %): для аммиака – 15 и 288, для водорода – 4 и 75, для метана – 5 и 15. При концентрациях меньше нижнего предела смесь бедна горючим и выделившегося при вспышке тепла недостаточно для воспламенения других частиц. При концентрациях больше верхнего предела смесь слишком богата горючим и воспламенения не происходит из-за недостатка окислителя.

Все вещества, способные к воспламенению и загоранию , подразделяют на 8 групп:

1 - Взрывчатые вещества – нитроглицерин, тетрил, тротил, аммониты. динамит; 2– Взрывоопасные вещества – динитрохлор, бензол, эфиры азотной кислоты, аммиачная селитра;

3 - Вещества, способные образовывать взрывчатые смеси с органическими продуктами , - перхлорат калия, перекиси натрия, калия и бария, азотнокислые калий, барий, кальций, натрий;

4 – Сжатые и сжиженные газы :

а) горючие и взрывоопасные газы - водород, метан, пропан, аммиак, сероводород;

б) инертные и негорючие газы - аргон, гелий, неон, углекислый газ, сернистый ангидрид;

в) газы, поддерживающие горение, - сжатый и жидкий кислород и воздух.

5 – Вещества, самовозгорающиеся при контакте с воздухом или водой, - металлический калий, натрий и кальций, карбид кальция, фосфористые кальций и натрий, цинковая пыль, алюминиевая пудра, пирофорные мессалические порошки и соединения.

6 – Легковоспламеняющиеся и горючие вещества :

а) жидкости – бензин, бензол, сероуглерод, ацетон, ксилол, скипидар, керосин, толуол, органические масла, амилацетат, этиловый и метиловый спирты;

б) твердые вещества – красный фосфор, нафталин;

7 – Вещества, способные вызывать воспламенение , - бром, азотная, серная и хлорсульфонная кислоты, марганцовокислый калий.

8 – Легкогорючие вещества – хлопок, сера, сажа.

Возникновение пожаров в зданиях и сооружениях, особенности распространения огня зависят от того, из каких материалов выполнены эти здания и сооружения, каковы их размеры.

Способность строительных материалов и конструкций воспламеняться, гореть или тлеть под воздействием огня или высокой температуры называют возгораемостью.

По степени возгораемости строительные материалы и конструкции подразделяют на три группы:

несгораемые – под действием источника возгорания (огня, высокой температуры), не воспламеняются, не тлеют и не обугливаются (например, бетон, железобетон, кирпич и др;)

трудносгораемые – под действием источника возгорания трудно воспламеняются, тлеют или обугливаются и продолжают гореть или тлеть лишь при наличии источника возгорания. После удаления источника огня горение и тление прекращается. К трудносгораемым относятся гипсовые и бетонные изделия с органическими заполнителями, древесина, пропитанная огнестойкими составами, и др.;

сгораемые – под воздействием источника возгорания воспламеняется и продолжает гореть или тлеть после его удаления. Сгораемыми являются лесоматериалы, битум, рубероид, многие пластические материалы.

Возгораемость строительных конструкций определяется, как правило, возгораемостью материалов. Однако в ряде случаев возгораемость конструкций оказывается меньшей, чем возгораемость входящих в ее состав материалов.

Способность конструкций сопротивляться воздействию пожара во времени при сохранении своих эксплуатационных свойств называют огнестойкостью.

Огнестойкость конструкций характеризуется пределом огнестойкости, представляющим собой время, по истечении которого конструкция теряет несущую или ограждающую способность при пожаре.

По огнестойкости здания делят на 5 степеней, при этом с возрастанием степени уменьшается предел огнестойкости. Например, в зданиях 1 и 2 степеней огнестойкости все конструкции (стены, перекрытия, покрытия, перегородки) выполняют из несгораемых материалов с пределами огнестойкости от 0,25 до 4 ч.

В зданиях 3 степени стены выполняют из несгораемых материалов, перекрытия и перегородки – из трудносгораемых, а совмещенные покрытия – из сгораемых материалов. Здания 4 степени огнестойкости имеют стены и перекрытия из трудносгораемых, а совмещенные покрытия и перегородки из сгораемых материалов. В зданиях 5 степени все конструкции выполняют из сгораемых материалов.

Оценка пожарной, взрывной и взрывопожарной опасности производства .

Условия, способствующие возникновению и развитию пожара в производственных помещениях и определяющие возможные его масштабы и последствия, зависят от того, какие вещества используют, перерабатывают или хранят в данном здании или сооружении, а также от особенностей его конструктивно-планировочного решения.

В соответствии со строительными нормами и правилами производственные здания и складыпо взрывной, взрывопожарной и пожарной опасности подразделяют на 6 категорий: А,Б,В,Г,Д,Е.

Категория А – взрывоопасные производства, связанные с применением горючих газов, нижний предел взрываемости которых 10% и менее объема воздуха; жидкостей стемпературой вспышки паров до 28*С включительно при условии, что указанные газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5% объема помещения; веществ, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом.

К категории А относятся производства, связанные с применением металлического натрия и калия, ацетона, сероуглерода, эфиров и спиртов (метилового и этилового и др.), а также окрасочные цехи, участки с наличием сжиженных газов. На ж.д. транспорте – это пункты и депо промывки и дегазации цистерн из-под легковоспламеняющихся жидкостей (ЛВЖ), к которым относятся бензин, бензол, сырая нефть и т.п., склады для опасных грузов, малярные цехи, в которых применяют нитрокраски, лаки и растворители из ЛВЖ с температурой вспышки паров 28*С и ниже, и др.

Категория Б – взрывопожароопасные производства, связанные с применением горючих газов, нижний предел взрываемости которых более 10% объема воздуха; жидкостей с температурой вспышки паров от 28 до 61 *С включительно; жидкостей, нагретых в условиях производства до температуры вспышки и выше; горючих пылей и волокон, нижний предел взрываемости которых 65 г/м кубический и менее к объему воздуха при условии, что указанные газы, жидкости и пыли могут образовывать взрывоопасные смеси в объеме, превышающем 5% объема помещения. К этой категории относят цехи, участки, отделения вагонных, локомотивных, моторвагонных депо и цехи заводов с производством малярных работ и применением спиртовых лаков и красок с температурой вспышки поров от 28 до 61 *С включительно, склады и кладовые, указанных лаков и красок, склады дизельного топлива, насосные и сливные эстакады по переливу этого топлива, цехи ремонта тепловозов с промывкой топливных баков и др.

Категория В – пожароопасные производства, связанные с применением жидкостей с температурой вспышки паров выше 61 *С; горючих пылей или волокон, нижний предел взрываемости которых более 65 г/м кубический к объему воздуха; веществ, способных только гореть при взаимодействии с водой, кислородом воздуха или друг с другом; твердых сгораемых веществ и материалов. Примерами производства этой категории являются смазочное хозяйство локомотивных и вагонных депо и заводов, масляное хозяйство тяговых подстанций, шпалопропиточные и шпалоремонтные заводы, склады лесоматериалов. тарные базы, билетные кассы, дома связи, библиотеки и т.д.

Категория Г – производства, связанные с обработкой несгораемых веществ и материалов в горячем, расплавленном или раскаленном состоянии, сопровождающейся выделением лучистого тепла, искр и пламени; твердых. жидких и газообразных веществ, которые сжигаются или утилизируются в качестве топлива. К этой категории производств относят тепловозные депо, цехи горячей штамповки, заливочные, бандажные, тележечные, сварочные участки различных цехов, кузнечные цехи и др.

Категория Д – производства, связанные с обработкой несгораемых веществ и материалов в холодном состоянии. Сюда можно отнести цехи холодной обработки металлов, воздуходувные и компрессорные станции, электровозные депо и т.д.

Категория Е – взрывоопасные производства, связанные с применением горючих газов без жидкой фазы и взрывоопасной пыли в таком количестве, когда они могут образовывать взрывоопасные смеси в объеме. превышающем 5% объема помещения, и когда по условиям технологического процесса возможен только взрыв (без последующего горения); веществ, способных взрываться (также без последующего горения) при взаимодействии с водой, кислородом воздуха или друг с другом. Производствами категории Е являются аккумуляторные, участки и станции по производству ацетилена, помещения АТС, постов СЦБ и связи и др.

Легковоспламеняющиеся и горючие жидкости отличаются по такой характеристике, как температура вспышки. Температура вспышки – это температура жидкости, при которой пары над поверхностью жидкости могут вспыхнуть от воздействия открытого источника огня. Легковоспламеняющиеся жидкости имеют температуру вспышки не выше 61оС, горючие жидкости – выше 61оС.

Виды ЛВЖ и ГЖ

Легковоспламеняющиеся жидкости бывают трех разрядов: особо опасные (первый разряд), постоянно опасные (второй разряд), опасные при повышенной температуре воздуха (третий разряд). Температура вспышки особо опасных ЛВЖ -13оС. Характерной особенностью особо опасных ЛВЖ является необходимость определенных условий их транспортировки, т.к. при нарушении герметичности сосуда хранения, пары жидкости могут быстро распространиться и воспламениться на расстоянии от емкости. К таким жидкостям относятся ацетон, некоторые сорта бензина, эфир, петролейный эфир, диэтиловый эфир, гексан, изопентан, циклогексан.

ЛВЖ второго разряда имеют температуру вспышки от -13 до +23оС. Такие жидкости имеют способность воспламеняться при комнатной температуре в случае соединения их паров с воздухом. Это такие жидкости, как этиловый спирт, бензол, метилацетат, этилацетат, этилбензол, октан, толуол, изооктан, низшие спирты, диоксоланы и диоксаны

ЛВЖ третьего разряда – это легковоспламеняющиеся жидкости с температурой вспышки от +23 до +60оС. Такие жидкости воспламеняются только при условии наличия в непосредственной близости источника огня. К ним относятся следующие жидкости: скипидар, сольвент, уайт-спирт, ксилол, циклогексанон, амилацетат, бутилацетат, хлорбензол.

Горючие жидкости имеют свойство самостоятельного горения при температуре вспышки выше 61оС. К горючим жидкостям относятся мазут, масла (вазелиновое, касторовое), дизельное топливо, глицерин, этиленгликоль, гексиловый спирт, гексадекан, анилин. Такие жидкости могут храниться в открытых емкостях и резервуарах (например, в бочках), в том числе на открытом воздухе. При работе с легковоспламеняющимися и горючими жидкости следует помнить о необходимости соблюдения противопожарных правил хранения, транспортировки и использования.



Понравилась статья? Поделиться с друзьями: