Наружное коленчатое тело. Преобразование зрительных сигналов в латеральном (наружном) коленчатом теле

Наружное коленчатое тело

Наружное коленчатое тело (corpus genicu-latum laterale) является местом расположения так называемого «второго нейрона» зрительно­го пути. Через наружное коленчатое тело про­ходит около 70% волокон зрительного тракта . Наружное коленчатое тело представляет собой возвышенность, соответствующую месту расположения одного из ядер зрительного буг­ра (рис. 4.2.26-4.2.28). Содержит оно около 1 800 000 нейронов, на дендритах которых за­канчиваются аксоны ганглиозных клеток сет­чатой оболочки.

Ранее предполагали, что наружное коленча­тое тело представляет собой лишь «ретрансля­ционную станцию», передающую информацию от нейронов сетчатки через зрительную лучис­тость коре головного мозга. В настоящее время показано, что на уровне наружного коленчато­го тела происходит довольно существенная и разноплановая обработка зрительной инфор­мации . О нейрофизиоло­гическом значении этого образования речь пой­дет несколько ниже. Первоначально необхо-


Рис. 4.2.26. Модель левого наружного коленчатого тела (по Wolff, 1951):

а - вид сзади и изнутри; б - вид сзади и снаружи (/ - зри­тельный тракт; 2 - седло; 3 - зрительная лучистость; 4 - го­ловка; 5 - тело; 6 - перешеек)

димо остановиться на его анатомических осо­бенностях.

Ядро наружного коленчатого тела представ­ляет собой одно из ядер зрительного бугра. Располагается оно между вентропостериолате-ральным ядром зрительного бугра и подушкой зрительного бугра (рис. 4.2.27).

Наружное коленчатое ядро состоит из дор-зального и филогенетически более древнего вентрального ядер. Вентральное ядро у челове­ка сохранено в виде рудимента и состоит из группы нейронов, расположенных ростральней дорзального ядра . У низших млекопитаю­щих это ядро обеспечивает наиболее прими­тивные фотостатические реакции. Волокна зри­тельного тракта к этому ядру не подходят.

Дорзальное ядро составляет основную часть ядра наружного коленчатого тела. Представ­ляет оно собой многослойную структуру в виде седла или асимметричного конуса с округлен­ной верхушкой (рис. 4.2.25-4.2.28). На гори­зонтальном срезе видно, что наружное коленча­тое тело связано спереди со зрительным трак­том, с латеральной стороны - с ретролентику-лярной частью внутренней капсулы, медиаль­но - со средним коленчатым телом, сзади с гиппокампальной извилиной, а постериолате-рально - с нижним рогом бокового желудоч­ка. К ядру наружного коленчатого тела сверху прилежит подушка зрительного бугра, антерио-латерально - темпоропонтинные волокна и зад­няя часть внутренней капсулы, латерально - зона Вернике, а с внутренней стороны - меди­альное ядро (рис. 4.2.27). Зона Вернике являет­ся самой внутренней частью внутренней капсу­лы. Именно в ней и начинается зрительная лу­чистость. Волокна зрительной лучистости рас­полагаются с дорзолатеральной стороны ядра наружного коленчатого тела, в то время как волокна слухового тракта - с дорзомедиальной.


■ .■. ■>

Рис. 4.2.27. Наружное коленчатое тело и его отноше­ние к структурам головного мозга:

а - горизонтальный срез мозга (/ - наружное коленчатое тело; 2 - внутрення капсула; 3 -подушка зрительного бугра); б - сагиттальный срез мозга (гистологический срез, окрашенный гематоксилином и эозином) (НКТ -наружное коленчатое тело)

Наружное коленчатое тело соединяется с верхним четверохолмием при помощи связки, называемой передним плечом.

Даже при макроскопическом исследовании наружного коленчатого тела выявляется, что это образование обладает слоистым строением. У обезьян и человека четко различается шесть полос «серого вещества» и расположенные между ними «белые» прослойки, состоящие из аксонов и дендритов (рис. 4.2.28). Первым слоем обозначен слой, расположенный с вент­ральной стороны. Два внутренних слоя состоят из клеток большого размера (магноцеллюляр-ные слои 1 и 2). Получили они такое название


Рис. 4.2.28. Наружное коленчатое тело:

/ - гиппокамп; 2 - субарохноидальное пространство; 3 - нож­ка мозга; 4 - слой 1; 5 - слой 2; 6 - нижний рог бокового желудочка; 7 - слой 3; 8 - слой 4; 9 - слой 5; 10 - слой 6. Наружное коленчатое тело является ядром зрительного бугра. Четко видно наличие шести темных слоев скопления нейронов, разделенных светлыми слоями, состоящими из нервных волокон. Слои 1 и 2 складываются из крупных нейронов (магноцеллю-лярные), а слои 3-6 - из мелких клеток (парвоцеллюлярные)

по той причине, что состоят из крупных нейро­нов с эксцентрично расположенным ядром и большим количеством в цитоплазме вещества Ниссля. Аксоны нейронов магноцеллюлярного слоя формируют не только зрительную лучис­тость, но также направляются к верхним бугор­кам четверохолмия. Четыре наружных слоя состоят из маленьких и среднего размера кле­ток (парвоцеллюлярные слои, 3-6). Они со­держат нейроны, получающие информацию от сетчатки и передающие ее только зрительной коре головного мозга (формируют зрительную лучистость). Обнаруживаются и нейроны, обес­печивающие связь между нейронами наружного коленчатого тела. Это так называемые «вста­вочные нейроны» (интернейроны). Предполага­ют, что два слоя, состоящие из мелких нейро­нов (парвоцеллюлярные слои), появляются в связи с развитием центрального зрения.

Важно отметить, что на перечисленные слои нейронов проецируются волокна, идущие от различных участков сетчатки обоих глаз. Так, перекрещенные волокна зрительного тракта за­канчиваются в 1, 4 и 6-м слоях, а неперекре-щенные - во 2, 3 и 5-м (рис. 4.2.29). Это про­исходит таким образом, что волокна от кор­респондирующих частей двух половин сетчатки (например, правая височная и левая назальная половины сетчатки) заканчиваются в соседних слоях. Приведенные особенности проекции на наружное коленчатое тело установлены на ос­новании использования разнообразных методов

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ


Рис. 4.2.29. Представительство сетчатой оболочки в наружном коленчатом теле:

Импульсы от корреспондирующих точек (а, б) двух сетчаток проходят в зрительный тракт. Неперекрешенные волокна (а") за­канчиваются во 2, 3 и 5-м слоях наружного коленчатого тела. Перекрещенные волокна (б") заканчиваются в слоях 1, 4 и 6. Импульсы после прохождения НКТ (в") проецируются на кору головного мозга

исследования. Так, в случаях разрушения контр­латерального зрительного нерва или предше­ствовавшего удаления глазного яблока разви­вается дегенерация нейронов 1, 4 и 6-го слоев наружного коленчатого тела (рис. 4.2.30). При разрушении гомолатеральных волокон зритель­ного нерва наступает дегенерация нейронов 2, 3 и 5-го слоев. Это явление называется транссинаптической дегенерацией. Установле­но также, что если при рождении котенку сшить веки одного глаза, то через три месяца насту­пит дегенерация 25-40% нейронов наружно­го коленчатого тела. Подобной формой транс­синаптической дегенерации можно объяснить некоторые механизмы развития амблиопии, раз­вивающейся при врожденном косоглазии.

О различной проекции на наружное коленча­тое тело перекрещенных и неперекрещенных волокон свидетельствуют и экспериментальные исследования. В этих исследованиях в одно из глазных яблок вводится радиоактивная амино­кислота, распространяющаяся трансаксонально по направлению наружного коленчатого тела и накапливающаяся в его нейронах (рис. 4.2.31).

Рис. 4.2.31. Распределение радиоактивной метки в на­ружных коленчатых телах после введения в левое глаз­ное яблоко обезьяны радиоактивной аминокислоты:

а - левое наружное коленчатое тело; б - правое наружное ко­ленчатое тело. (Аминокислота поглощается ганглиозными клет­ками сетчатой оболочки и транспортируется по аксонам через зрительный нерв, зрительный перекрест и зрительный тракт к наружному коленчатому телу. Иллюстрация указывает на то, что слои 2, 3 и 5 получают информацию от ипсилатераль-ного глаза, а слои 1, 4 и 6 - от контрлатерального глаза)


Рис. 4.2.30. Изменение микроскопического строения наружного коленчатого тела с двух сторон при удале­нии одного глазного яблока (по Alvord, Spence, 1997):

а - наружное коленчатое тело (НКТ), расположенное ипсилате-рально относительно энуклеированного глаза; б - НКТ, распо­ложенное контрлатерально относительно энуклеированного гла­за. (После смерти больного, у которого задолго до смерти было удалено глазное яблоко, микроскопически исследованы наруж­ные коленчатые тела. После нарушения нормальной проекции ганглиозных клеток сетчатой оболочки на нейроны НКТ наступа­ет атрофия последних. При этом интенсивность окрашивания слоев уменьшается. На рисунке видно, что 3-й и 5-й слои НКТ, расположенные ипсилатерально относительно удаленного глаза, значительно слабее окрашены гематоксилином и эозином. В то же время слои 3 и 5 НКТ, расположенные контрлатерально от­носительно удаленного глаза, окрашены более интенсивно, чем слои 4 и 6. Можно также отметить, что слои 1 и 2 поражены в наименьшей степени)


Функциональная анатомия зрительной системы

Особенности проекции сетчатки на наруж­ное коленчатое тело. В последнее время выяв­лены особенности проекции сетчатой оболочки на наружное коленчатое тело. Сводятся они к тому, что каждая точка половины сетчатки точ­но проецируется на определенную точку ядра наружного коленчатого тела («точка к точке») . Таким образом, пространственное возбуждение в слое ганглиозных клеток сетчат­ки «картируется» пространственным распреде­лением возбуждения нейронов в разных слоях наружного коленчатого тела. Строгий топогра­фический порядок связей наблюдается и между клетками различных слоев. Проекции каждой точки поля зрения во всех слоях находятся не­посредственно одна под другой, так что можно выделить колонкообразный участок, пересека­ющий все слои наружного коленчатого тела и соответствующий проекции локальной области поля зрения.

Приведенная закономерность проекции вы­явлена на основании экспериментальных ис­следований. Так, показано, что локальное то­чечное повреждение сетчатки приводит к раз­витию транснейронной дегенерации небольших, но четко очерченных скоплений клеток в трех слоях наружного коленчатого тела с обеих сто­рон . Фокальное повреждение зрительной коры или введение в нее радио­активного трейсера приводит к «маркировке» клеток или волокон, расположенных на линии, простирающейся поперек всех слоев наружно­го коленчатого тела на том же самом уровне. Эти участки соответствуют «рецептивным по­лям» наружного коленчатого тела и получили название «проекционная колонка» (рис. 4.2.32).

В этом месте изложения материала целесо­образно остановиться на особенностях рецеп­тивных полей наружного коленчатого тела. Ре­цептивные поля наружного коленчатого тела напоминают таковые ганглозных клеток сетча­той оболочки. Различают несколько основных типов рецептивных полей. Первый тип характе­ризуется наличием ON-ответа при возбуждении центра и OFF-ответа при возбуждении пери­ферии (ON/OFF-тип). Второй тип рецептив­ных полей характеризуется обратным отноше­нием - OFF/ON-тип. Для наружного коленча­того тела характерно также и то, что в слоях 1 и 2 обнаруживается смесь рецептивных по­лей первого и второго типов. В то же время в слоях 3-6 обнаруживается только один тип рецептивных полей (в двух слоях поля первого типа, а в других двух - второго типа). Обнару­живаются также линейные рецептивные поля с различным соотношением ON- и OFF-центров (рис. 4.2.33). Использование электрофизиологи­ческих методов позволило выявить, что рецеп­тивные поля наружного коленчатого тела обла­дают более выраженной оппонентной реакцией, чем рецептивные поля ганглиозных клеток сет-


Латеральная

Рис. 4.2.32. Схематическое изображение парасагит-

тального среза наружного коленчатого тела. Проекция

зрительного сигнала с формированием рецептивного



1т*- Задняя

* * *Z* х

Рис. 4.2.33. Структура рецептивных полей наружно­го коленчатого тела (а, б) и первичной зрительной коры {в-ж) (по Hubel, Weisel, 1962):

а - ON-центр рецептивное поле наружного коленчатого тела; б - OFF-центр рецептивное поле наружного коленчатого тела; в -ж - различные варианты строения простых рецептивных по­лей. (Крестики отмечают поля, отвечающие ON-реакцией, а тре­угольники- OFF-реакцией. Ось рецептивного поля отмечена сплошной линией, проходящей через центр рецептивного поля)

чатки. Именно это предопределяет большое значение наружного коленчатого тела в усиле­нии контраста. Выявлены также явления про­странственно-временной суммации поступаю­щих сигналов, анализа спектральных харак­теристик сигнала и т. д. Нейроны наружного коленчатого тела, участвующие в кодировании цвета, локализуются в парвоцеллюлярных сло­ях, где сконцентрированы цветооппонентные

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ


Клетки «красно-зеленого» и «сине-желтого» цвета. Как и для ганглиозных клеток сетчатки, для них характерна линейная суммация колбоч-ковых сигналов по площади сетчатки. Магно-целлюлярные слои также состоят из оппонент-ных нейронов с пространственно распределен­ными в рецептивных полях входами от колбочек разного типа. Необходимо отметить, что анато­мическая сегрегация нейронов с различными функциональными свойствами наблюдается уже в сетчатке, где отростки биполяров и ганглиоз­ных клеток ON- и OFF-типов локализуются в разных подслоях внутреннего плексиформного слоя. Такое «анатомическое обособление» ней­ронных систем, образующих разные каналы передачи информации, является общим принци­пом в построении анализаторных структур и наиболее выражено в колончатой структуре коры, на чем мы остановимся несколько ниже.

Сетчатая оболочка

наружную часть наружного коленчатого тела (рис. 4.2.29). Макулярная область сетчатки проецируется на клиновидный сектор, располо­женный в задних двух третях или трех четвер­тях наружного коленчатого тела (рис. 4.2.34, 4.2.35).

Отмечено, что представительство зритель­ных полуполей в зрительном тракте как бы «поворачивается» на уровне наружного колен­чатого тела таким образом, что вертикальное сечение становится горизонтальным. При этом верхняя часть сетчатки проецируется на меди­альную часть, а нижняя на латеральную часть наружного коленчатого тела. Этот поворот пол­ностью изменяется в зрительной лучистости таким образом, что, когда волокна достигают зрительной коры, квадрант верхней части сет­чатки располагается в верхней части тракта, а нижний квадрант - снизу.

Наружное коленчатое тело



Рис. 4.2.34. Проекция сетчатой оболочки на наружное коленчатое тело: / - макула; 2 - монокулярный полумесяц



з р Яа

Продолжая описание особенностей проек­ции сетчатки на наружное коленчатое тело, не­обходимо отметить, что периферические височ­ные участки сетчатки противоположного глаза проецируются на слои 2, 3 и 5 и называются монокулярным полумесяцем.

Наиболее полные данные о ретинотопичес-кой организации волокон зрительного нерва, зрительного перекреста и ядер наружного ко­ленчатого тела у человека и обезьяны получе­ны Brouewer, Zeeman , Polyak , Hoyt, Luis . Первоначально мы опишем проек­цию немакулярных волокон. Неперекрещиваю-щиеся волокна, идущие от верхне-височного квадранта сетчатки, в зрительном перекресте располагаются дорзо-медиально и проецируют­ся на медиальую часть ядра наружного колен­чатого тела. Неперекрещивающиеся волокна, идущие от нижне-височного квадранта сетчат­ки, в зрительном перекресте располагаются снизу и латерально. Они проецируются на


Рис. 4.2.35. Схематическое изображение коронарного

среза через наружное коленчатое тело (вид сзади)

(по Miller, 1985):

обращает на себя внимание большое представительство в на­ружном коленчатом теле макулярной области (1-6-номера слоев НКТ)


Функциональная анатомия зрительной системы

Синаптические взаимодействия нейронов наружного коленчатого тела. Ранее предпола­гали, что аксон ганглиозной клетки контакти­рует только с одним нейроном наружного ко­ленчатого тела. Благодаря электронной микро­скопии установлено, что афферентные волокна образуют синапсы с несколькими нейронами, (рис. 4.2.36). В то же время каждый нейрон наружного коленчатого тела получает информа­цию от нескольких ганглиозных клеток сетчат­ки . На основании ультраструктурных ис­следований выявлены также разнообразные си­наптические контакты между ними . Аксоны ганглиозных клеток могут заканчиваться как на теле нейронов наружного коленчатого тела, так и на первичных или вторичных их дендритах. При этом формируются так называемые «клу-бочковые» окончания (рис. 4.2.37, см. цв. вкл.). У кошек «клубочки» отделены от окружающих образований тонкой капсулой, состоящей из от­ростков глиальных клеток . Подобная изоляция «клубочков» отсутствует у обезьян.

Синаптические «клубочки» содержат синап­сы аксонов ганглиозных клеток сетчатки, си­напсы нейронов наружного коленчатого тела и вставочных нейронов («интернейронов»). Эти синаптические образования напоминают «триа­ды» сетчатой оболочки.

Каждый «клубочек» состоит из зоны плотно упакованных нейронов и их терминалов. В цент­ре этой зоны расположен аксон ганглиозной

Рис. 4.2.36. Схематическое изображение взаимодейст­вия терминалов аксонов ганглиозных клеток сетчатки с нейронами наружного коленчатого тела у обезьяны (по Glees, Le Gros, Clark, 1941):

пучок волокон зрительного нерва (а) входит в клеточный слой (б) наружного коленчатого тела (НКТ) справа. Некоторые волок­на отдают 5-6 ветвей, подходят к телу нейронов НКТ и обра­зуют синапс. Аксоны клеток НКТ (в) покидают клеточный слой НКТ, проходят через волокнистый слой и формируют зритель­ную лучистость


клетки сетчатки, являющийся пресинаптичес-ким. Он образует синапсы с нейроном наруж­ного коленчатого тела и вставочными нейрона­ми. Дендриты нейронов наружного коленчатого тела поступают в «клубочки» в виде шипа, ко­торый непосредственно и образует синапс с аксоном сетчатки. Дендрит вставочных нейро­нов (интернейронов) образует синапс со смеж­ным «клубочком», формируя между ними по­следовательные синапсы.

Lieberman выделяет пре- и постсинап-тические «ингибирующие» и «возбуждающие» дендритические и «клубочковые» синапсы. Они представляют собой сложное скопление си­напсов между аксонами и дендритами. Именно эти синапсы структурно обеспечивают феномен торможения и возбуждения рецептивных полей наружного коленчатого тела .

Функции наружного коленчатого тела. Предполагают, что к функциям наружного ко­ленчатого тела относятся: усиление контраста изображения, организация зрительной инфор­мации (цвет, движение, форма), модуляция уровня обработки зрительной информации с их активацией (посредством ретикулярной форма­ции) . Обладает наружное коленчатое тело и бинокулярными рецептивными полями . Важно отметить, что на функции наруж­ного коленчатого тела влияют и более высо­ко расположенные центры мозга. Подтвержде­нием роли наружного коленчатого тела в обра­ботке информации, идущей от высших отделов мозга, является обнаружение проекции на него эфферентных волокон, исходящих из коры го­ловного мозга. Возникают они в VI слое зри­тельной коры и проецируются на все слои на­ружного коленчатого тела. По этой причине не­значительное повреждение зрительной коры вызывает атрофию нейронов во всех шести слоях наружного коленчатого тела . Терминалы этих волокон небольшого размера и содержат многочисленные синаптические пу­зырьки. Оканчиваются они как на дендритах нейронов наружного коленчатого тела, так и на вставочных нейронах («интернейронах») . Предполагают, что посредством этих во­локон кора головного мозга модулирует дея­тельность наружного коленчатого тела . С другой стороны, показано, что из­менение активности нейронов наружного колен­чатого тела избирательно активизируют или тормозят нейроны зрительной коры мозга.

Существуют и другие связи наружного ко­ленчатого ядра. Это связь с подушкой зритель­ного бугра, вентральным и латеральным ядрами зрительного бугра .

Кровоснабжение наружного коленчатого тела осуществляется задней мозговой и задней ворсинчатой артериями (рис. 4.2.38) . Основным сосудом, кровоснабжаю-щим наружное коленчатое тело, особенно зад-не-внутреннюю его поверхность, является зад-

Глава 4. ГОЛОВНОМ МОЗГ И ГЛАЗ


90 80 70 60150 40 30 20-10


Рис. 4.2.38. Артериальное кровоснабжение поверхности наружного коленчатого тела:

/ - передняя ворсинчатая (хориоидальная) артерия; 2 - вор­синчатое сплетение; 3 - ножка мозга; 4 - ворота наружного ко­ленчатого тела; 5 - наружное коленчатое тело; 6 - медиальное коленчатое тело; 7 - глазодвигательный нерв; 8 - ядро глазо­двигательного нерва; 9 - задняя мозговая артерия; 10 - задняя ворсинчатая артерия; // - черная субстанция

няя мозговая артерия. В ряде случаев от этой артерии отходит ветвь - задняя ворсинчатая (хориоидальная) артерия. При нарушении кро­вообращения в этой артерии обнаруживаются нарушения поля верхнего гомонимного квадран­та сетчатой оболочки.

Передняя ворсинчатая (хориоидальная) ар­терия почти полностью кровоснабжает перед­нюю и боковую поверхности наружного колен­чатого тела. По этой причине нарушение крово­обращения в ней приводит к поражению воло­кон, исходящих из нижнего квадранта сетчатки (рис. 4.2.39). Эта артерия отходит от внутренней сонной артерии (иногда от средней мозговой артерии) сразу дистальней места вы­хода задней соединительной артерии. При до­стижении передней части наружного коленча­того тела передняя ворсинчатая артерия отдает различное число ветвей перед вступлением в нижний рог бокового желудочка.

Часть наружного коленчатого тела, на ко­торую проецируются волокна, исходящие из желтого пятна, кровоснабжается как перед­ней, так и задней ворсинчатой артериями . Кроме того, от хорошо развитой системы анастомозов, расположен­ных в мягкой и паутинной оболочках мозга, отходят многочисленные артериолы, проникаю­щие в наружное коленчатое тело. Там они обра­зуют густую сеть капилляров во всех его слоях .


^--^--^ Горизонтальный меридиан поля зрения - - - - - Нижний косой меридиан поля зрения

I I Территория передней ворсинчатой артерии ВИВ Территория наружной ворсинчатой артерии

Рис. 4.2.39. Схема кровоснабжения правого наружного коленчатого тела и особенности выпадения поля зрения (гомонимный дефект поля зрения), наступающего в ре­зультате нарушения кровообращения в бассейне ворсин­чатой (хориоидальной) артерии (по Frisen et al., 1978):

а - сетчатка; б - наружное коленчатое тело (/-передняя вор­синчатая артерия; 2 - медиальная поверхность; 3 - латераль­ная поверхность; 4 - задняя ворсинчатая артерия; 5 - задняя артерия мозга)


Функциональная анатомия зрительной системы

4.2.6. Зрительная лучистость

Зрительная лучистость (radiatio optica; Гра-сиоле, Gratiolet) является аналогом других лу-чистостей зрительного бугра, таких как слухо­вая, затылочная, теменная и лобная. Все пере­численные лучистости проходят через внутрен­нюю капсулу, соединяющую полушария мозга и


стволовую часть мозга, спинной мозг. Внутрен­няя капсула находится латеральней зритель­ного бугра и боковых желудочков мозга и ме-диальней чечевицеподобного ядра (рис. 4.2.40, 4.2.41). Наиболее задняя часть внутренней кап­сулы содержит волокна слуховой и зрительной лучистости и нисходящие волокна, идущие от затылочной коры к верхним бугоркам четверо­холмия .



10

и

16

17

Рис. 4.2.41. Горизонтальный срез моз­га на уровне расположения зритель­ной лучистости:

/ - шпорная борозда; 2 - зрительная лу­чистость; 3 - внутренняя капсула; 4 - на­ружная капсула; 5 - четвертый желудочек;

6 - пластинка прозрачной перегородки;

7 - передний рог бокового желудочка; 8 -
продольная щель мозга; 9 - колено мозо­
листого тела; 10 - полость прозрачной пе­
регородки; // - головка хвостатого ядра;
12 - ограда; 13 - скорлупа; 14 - бледный
шар; 15 - зрительный бугор; 16 - гиппо-
камп; 17 - заднее колено бокового желу­
дочка

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ

Зрительная лучистость соединяет наружное коленчатое тело с корой затылочной доли го­ловного мозга. При этом ход волокон, исходя­щих от различных отделов наружного коленча­того тела, довольно существенно отличается. Так, волокна, идущие от нейронов латерального отдела наружного коленчатого тела, огибают нижний рог бокового желудочка, расположен­ный в височной доле, а затем, направляясь кза­ди, проходят под задним рогом этого желудоч­ка, достигая нижних отделов зрительной коры, вблизи шпорной борозды (рис. 4.2.40, 4.2.41). Волокна от медиального отдела наружного ко­ленчатого тела идут несколько более прямым путем к первичной зрительной коре (поле 17 по Бродману), расположенной в медиальной части затылочной доли. Волокна этого пути отклоня­ются латерально, пройдя непосредственно кпе­реди от входа в боковой желудочек, а затем поворачивают кзади, идут в каудальном направ­лении, огибая сверху задний рог этого желу­дочка и оканчиваются в коре, расположенной вдоль верхнего края шпорной борозды.

Верхние волокна, покидающие наружное коленчатое тело, направляются прямо к зри­тельной коре. Нижние волокна делают петлю вокруг желудочков мозга (петля Меера) и на­правляются к височной доле. Нижние волокна плотно прилежат к чувствительным и двига­тельным волокнам внутренней капсулы. Даже небольшой инсульт, возникающий в этой об­ласти, приводит к верхним гемианопсическим дефектам поля зрения и гемипарезу (контр­латеральному).

Наиболее передние волокна обнаруживают­ся приблизительно в 5 еж позади вершины височной доли. Отмечено, что лобэктомия, при которой мозговую ткань иссекают в 4 см от вершины височной доли, не приводит к появ­лению дефекта поля зрения. При поврежде­нии более обширной области (глубоко распо­ложенные опухоли, темпоральная декомпрес­сия по поводу травмы или инфекционного заболевания) развиваются гомонимные верхне­квадрантные гемианопсии . Наиболее ти­пичные формы дефекта поля зрения при по­вреждении зрительной лучистости приведены на рис. 4.2.19, 4.2.43.

Как указано выше, зрительная лучистость содержит 3 главные группы волокон. Верх­няя часть содержит волокна, обслуживающие нижние поля зрения, нижняя часть - верхние поля. Центральная часть содержит макулярные волокна.

Ретинотопическая организация волокон на­ружного коленчатого тела распространяется и на зрительную лучистость, но с некоторыми из­менениями в положении волокон (рис. 4.2.42). Дорзальный пучок волокон, представляющий верхний периферический квадрант сетчатки, исходит из медиальной части наружного колен­чатого тела и проходит к дорзальной губе пти-


чьей шпоры. Вентральный пучок волокон пред­ставляет периферию нижнего квадранта сетчат­ки. Проходит он в латеральной части наружно­го коленчатого тела и подходит к вентральной губе птичьей шпоры. Предполагают, что эти проекции периферии сетчатки лежат в зритель­ной лучистости медиальней проекции макуляр-ных волокон . Макулярные волокна рас­пространяют вперед, занимая большую цент­ральную часть зрительной лучистости в виде клина. Затем они направляются кзади и сходят­ся в области верхней и более низко располо­женной губ птичьей шпоры.

В результате разделения периферических и центральных проекций повреждение зритель­ной лучистости может привести к квадрантным выпадениям поля зрения с наличием четкой горизонтальной границы.

Расположенные наиболее периферически на­зальные проекции сетчатки, представляющие собой «монокулярный полумесяц», собираются вблизи верхних и более низких границ дор-зальных и вентральных пучков зрительной лу­чистости .

Нарушения в области зрительной лучисто­сти приводят к ряду специфических наруше­ний полей зрения, часть которых приведена на рис. 4.2.43. Характер выпадения поля зрения во многом определяется уровнем повреждения. Причиной подобных нарушений могут быть раз-

Наружное коленчатое тело




(3(3

оо

Рис. 4.2.43. Схема распространения волокон в зри­тельном тракте, наружном коленчатом теле и зритель­ной лучистости. Нарушение поля зрения при поврежде­нии участков, расположенных после зрительного пере­креста:

/ - сдавление зрительного тракта - гомонимная гемианопсия с нечетким краем; 2 - сдавление проксимальной части зрительно­го тракта, наружного коленчатого тела или нижней части зри­тельной лучистости - гомонимная гемианопсия без сохранения макулярного поля с четким краем; 3 - сдавление передней пет­ли зрительной лучистости - верхняя квадрантная анопсия с не­четкими краями; 4 -сдавление верхней части зрительной лу­чистости - нижняя квадрантная анопсия с нечеткими краями;

5 - сдавление средней части зрительной лучистости - гомоним­
ная гемианопсия с нечеткими краями и выпадением центрально­
го зрения; 6 - сдавление задней части зрительной лучистости -
конгруентная гомонимная гемианопсия с сохранением централь­
ного зрения; 7 - сдавление передней части коры в области шпо­
ры - темпоральное выпадение поля зрения с противоположной
стороны; 8 - сдавление средней части коры в области шпоры -
гомонимная гемианопсия с сохранением центрального зрения со
стороны поражения и сохранением темпорального поля зрения с
противоположной стороны; 9 - сдавление задней части коры за­
тылочной области - конгруентная гомонимная гемианопсичес-

кая скотома

нообразные заболевания мозга. Наиболее часто это нарушение кровообращения (тромбоз, эм­болия при гипертонической болезни, инсульт) и развитие опухоли (глиома) .

В связи с тем, что нарушение структуры и функции зрительной лучистости нередко связа­но с нарушением кровообращения, важно знать

06 особенностях кровоснабжения этой области.
Кровоснабжение зрительной лучистости

осуществляется на 3 уровнях (рис. 4.2.24):

1. Часть зрительной лучистости, проходя­
щей латерально и выше нижего рога бокового
желудочка, кровоснабжается ветвью передней
ворсинчатой (хориоидальной) артерии.

2. Часть зрительной лучистости, располо­
женной позади и латеральней рога желудоч­
ка, кровоснабжается глубокой глазной ветвью
средней мозговой артерии. Последняя прони-


кает в эту область через переднее перфориро­ванное вещество совместно с латеральными полосчатыми артериями.

3. При подходе зрительной лучистости к коре головного мозга кровоснабжение осущест­вляется перфорирующими артериями коры, главным образом, ветвями артерии птичьей шпоры. Артерия птичьей шпоры отходит от задней мозговой артерии, а иногда и от средней мозговой артерии.

Все перфорирующие артерии относятся к так называемым концевым артериям.

Зрительная кора

Как было указано выше, системы нейронов сетчатки и наружного коленчатого тела анали­зируют зрительные стимулы, оценивая их цве­товые характеристики, пространственный конт­раст и среднюю освещенность в различных участках поля зрения. Следующий этап анализа афферентных сигналов выполняется системой нейронов первичной зрительной коры (visul cortex).

Выявление участков коры головного мозга, отвечающих за обработку зрительной инфор­мации, имеет свою довольно длительную пре­дысторию. Еще в 1782 г. студент-медик Fran­cesco German описал белую полосу, проходя­щую через серое вещество затылочной доли. Именно он впервые предположил, что кора мо­жет содержать анатомически отличающиеся об­ласти. До открытия Gennari анатомы предпола­гали, что кора представляет собой однородную пластину ткани. Gennari даже не представлял, что он наткнулся на первичную зрительную кору. Прошло более столетия, пока Henschen доказал, что полоска Gennari соответствует первичной зрительной коре.

представляет собою небольшое продолговатое возвышение на задне-нижнем конце зрительного бугра сбоку от pulvinar. У ганглиозных клеток наружного коленчатого тела заканчиваются волокна зрительного тракта и от них же берут начало волокна пучка Грациоле. Таким образом, здесь заканчивается периферический неврон и берет начало центральный неврон зрительного пути.

Установлено, что хотя большинство волокон зрительного тракта и заканчивается в наружном коленчатом теле, все же небольшая часть их идет к pulvinar и переднему четверохолмию. Эти анатомические данные послужили основанием для распространенного в течение долгого времени мнения, согласно которому как наружное коленчатое тело, так и pulvinar и переднее четверохолмие считались первичными зрительными центрами .

В настоящее время накопилось много данных, не позволяющих считать pulvinar и переднее четверохолмие первичными зрительными центрами.

Сопоставление клинических и патологоанатомических данных, а также данных эмбриологии и сравнительной анатомии не позволяет приписывать pulvinar роль первичного зрительного центра. Так, по наблюдениям Геншена, при наличии патологических изменений в pulvinar поле зрения остается нормальным. Броувер отмечает, что при измененном наружном коленчатом теле и неизмененном pulvinar наблюдается гомонимная гемианопсия; при изменениях в pulvinar и неизмененном наружном коленчатом теле поле зрения остается нормальным.

Аналогично обстоит дело и с передним четверохолмием . Волокна зрительного тракта образуют в нем зрительный слой и заканчиваются в расположенных у этого слоя клеточных группах. Однако опыты Прибыткова показали, что энуклеация одного глаза у животные не сопровождается дегенерацией этих волокон.

На основании всего изложенного выше в настоящее время есть основания полагать, что только наружное коленчатое тело является первичным зрительным центром.

Переходя к вопросу о проекции сетчатки в наружном коленчатом теле, необходимо отметить следующее. Монаков вообще отрицал наличие какой-нибудь проекции сетчатки в наружном коленчатом теле . Он считал, что все волокна, идущие от разных участков сетчатки, в том числе и папилломакулярные, равномерно распределяются по всему наружному коленчатому телу. Геншен еще в 90-х годах прошлого столетия доказал ошибочность этого взгляда. У 2 больных с гомонимной нижней квадрантной гемианопсией при патологоанатомическом исследовании он нашел ограниченные изменения в дорзальной части наружного коленчатого тела.

Рённе (Ronne) при атрофии зрительных нервов с центральными скотомами на почве алкогольной интоксикации нашел ограниченные изменения ганглиозных клеток в наружном коленчатом теле, указывающие на то, что область желтого пятна проицируется на дорзальную часть коленчатого тела.

Приведенные наблюдения с несомненностью доказывают наличие определенной проекции сетчатки в наружном коленчатом теле . Но имеющиеся в этом отношении клинико-анатомические наблюдения слишком малочисленны и не дают еще точных представлений о характере этой проекции. Упоминавшиеся нами экспериментальные исследования Броувера и Земана на обезьянах позволили до некоторой степени изучить проекцию сетчатки в наружном коленчатом теле. Они установили, что большая часть наружного коленчатого тела занята проекцией отделов сетчатки, участвующих в бинокулярном акте зрения. Крайняя периферия носовой половины сетчатки, соответствующая монокулярно воспринимаемому височному полулунию, проецируется на узкую зону в вентральной части наружного коленчатого тела. Проекция желтого пятна занимает большой участок в дорзальной части. Верхние квадранты сетчатки проецируются на наружное коленчатое тело вентро-медиально; нижние квадранты - вентро-латерально. Проекция сетчатки в наружном коленчатом теле у обезьяны представлена на рис. 8.

В наружном коленчатом теле (рис. 9)

Рис. 9. Строение наружного коленчатого тела (по Пфейферу).

имеется также раздельная проекция перекрещенных и неперекрещенных волокон. В выяснение этого вопроса существенный вклад вносят исследования М. Минковского. Он установил, что у ряда животных после энуклеации одного глаза, а также и у человека при длительной односторонней слепоте в наружном коленчатом теле наблюдаются атрофия волокон зрительного нерва и атрофия ганглиозных клеток . Минковский обнаружил при этом характерную особенность: в обоих коленчатых телах атрофия с определенной закономерностью распространяется на различные слои ганглиозных клеток. В наружном коленчатом теле каждой стороны слои с атрофированными ганглиозными клетками чередуются со слоями, в которых клетки остаются нормальными. Атрофическим слоям на стороне энуклеации соответствуют идентичные слои на противоположной стороне, остающиеся нормальными. Вместе с тем аналогичные слои, остающиеся нормальными на стороне энуклеации, на противоположной стороне атрофируются. Таким образом, наступающая после энуклеации одного глаза атрофия клеточных слоев в наружном коленчатом теле носит определенно альтернирующий характер. На основании своих наблюдений Минковский пришел к выводу, что каждый глаз имеет в наружном коленчатом теле отдельное представительство . Перекрещенные и неперекрещенные волокна, таким образом, заканчиваются у различных слоев ганглиозных клеток, как это хорошо изображено на схеме Ле Гро Кларка (Le Gros Clark) (рис. 10).

Рис. 10. Схема окончания волокон зрительного тракта и начала волокон пучка Грациоле в наружном коленчатом теле (по Ле Гро Кларку).
Сплошные линии - перекрещенные волокна, прерывистые линии неперекрещенные волокна. 1 - зрительный тракт; 2 - наружное коленчатое тело 3 - пучок Грациоле; 4 - кора затылочной доли .

Данные Минковского в дальнейшем были подтверждены экспериментальными и клинико-анатомическими работами других авторов. Л. Я. Пинес и И. Е. Пригонников исследовали наружное коленчатое тело через 3,5 месяца после энуклеации одного глаза. При этом в наружном коленчатом теле на стороне энуклеации были отмечены дегенеративные изменения в ганглионарных клетках центральных слоев, периферические же слои оставались нормальными. В противоположной стороне наружного коленчатого тела наблюдались обратные соотношения: центральные слои оставались нормальными, в периферических слоях отмечались дегенеративные изменения.

Интересные наблюдения, относящиеся к случаю односторонней слепоты большой давности, опубликовал недавно чехословацкий ученый Ф. Врабег (Vrabeg). У больного 50 лет в десятилетнем возрасте был удален один глаз. Патологоанатомическое исследование наружных коленчатых тел подтвердило наличие альтернирующей дегенерации ганглиозных клеток.

На основании приведенных данных можно считать установленным, что оба глаза имеют в наружном коленчатом теле раздельное представительство и, следовательно, перекрещенные и неперекрещенные волокна заканчиваются в различных слоях ганглиозных клеток.

Оглавление темы "Рецепторный потенциал палочек и колбочек. Рецептивные поля клеток сетчатки. Проводящие пути и центры зрительной системы. Зрительное восприятие.":
1. Рецепторный потенциал палочек и колбочек. Ток ионов через мембрану фоторецептора в темноте и на свету.
2. Адаптация фоторецепторов к изменениям освещенности. Световая адаптация. Десенситизация. Темновая адаптация.
3. Рецептивные поля клеток сетчатки. Прямой путь передачи сигналов от фоторецепторов к ганглиозной клетке. Непрямой путь передачи сигналов.
4. Рецептивные поля с оn-центрами и off-центрами. On-нейроны. Off-нейроны. Ганглиозная клетка on-типа. Ганглиозная клетка off-типа.
5. Рецептивные поля цветового восприятия. Восприятие цвета. Первичные цвета. Монохромазия. Дихромазия. Трихромазия.
6. М- и Р-типы ганглиозных клеток сетчатки. Магноцеллюлярные (М-клетки) клетки. Парвоцеллюлярные (Р-клетки) ганглиозные клетки сетчатки.
7. Проводящие пути и центры зрительной системы. Зрительный нерв. Зрительные тракты. Глазодвигательный рефлекс.
8. Латеральное коленчатое тело. Функциональная организация латерального коленчатого тела. Рецептивные поля латерального коленчатого тела.
9. Переработка зрительной сенсорной информации в коре. Проекционная зрительная кора. Световая грань. Комплексные нейроны. Двойные противоцветные клетки.
10. Зрительное восприятие. Магноцеллюлярный путь. Парвоцеллюлярный путь. Восприятие формы, цвета.

Латеральное коленчатое тело. Функциональная организация латерального коленчатого тела. Рецептивные поля латерального коленчатого тела.

Аксоны ганглиозных клеток образуют топографически организованные соединения с нейронами латерального коленчатого тела, которые представлены шестью слоями клеток. Два первых слоя, расположенные вентрально, состоят из магноцеллюлярных клеток, имеющих синапсы с М-клетками сетчатки, причем первый слой получает сигналы от носовой половины сетчатки контралатерального глаза, а второй - от височной половины ипсилатерального глаза. Остальные четыре слоя клеток, расположенные дорсальнее, получают сигналы от Р-клеток сетчатки: четвертый и шестой - от носовой половины сетчатки контралатерального, а третий и пятый - от височной половины сетчатки ипсилатерального глаза. В результате такой организации афферентных входов в каждом латеральном коленчатом теле , т. е. левом и правом, формируются шесть расположенных точно одна над другой нейронных карт противоположной половины зрительного поля. Нейронные карты организованы ретинотопически, в каждой из них около 25 % клеток получают информацию от фоторецепторов центральной ямки.

Рецептивные поля нейронов латерального коленчатого тела имеют округлую форму с центрами on- или off-типа и антагонистичной по отношению к центру периферией. К каждому нейрону конвергирует небольшое количество аксонов ганглиозных клеток, и потому характер передающейся зрительной коре информации здесь почти не изменяется. Сигналы от парвоцеллюлярных и магноцеллюлярных клеток сетчатки перерабатываются независимо друг от друга и передаются в зрительную кору параллельными путями. Нейроны латерального коленчатого тела получают от сетчатки не более 20 % афферентных входов, а остальные афференты образованы в основном нейронами ретикулярной формации и коры. Эти входы в латеральное коленчатое тело регулируют передачу сигналов от сетчатки к коре.

Это подкорковый центр, который обеспечивает передачу информации уже в зрительную кору.

У человека эта структура имеет шесть слоёв клеток, как и в зрительной коре. Волокна от сетчатки поступают перекрещенные и неперекрещенные в chiasma opticus. 1-й, 4-й, 6-й слои получают перекрещенные волокна. 2-й, 3-й, 5-й слои получают неперекрещенные.

Вся информация, поступающая к наружному коленчатому телу от сетчатки, упорядочена и сохраняется ретинотопическая проекция. Поскольку волокна входят в наружное коленчатое тело по типу гребёнки, в НКТ нет таких нейронов, которые получают информацию от двух сетчаток одновременно. Из этого следует, что в нейронах НКТ отсутствует бинокулярное взаимодействие. К НКТ поступают волокна от M-клеток и P-клеток. M-путь, сообщающий информацию от крупных клеток, передаёт информацию о движениях объектов и оканчивается в 1-м и 2-м слоях. P-путь связан с цветовой информацией и волокна оканчиваются в 3-м, 4-м, 5-м, 6-м слоях. В 1-м и 2-м слоях НКТ рецептивные поля высокочувствительны к движению и не различают спектральные характеристики (цвет). Такие рецептивные поля в небольшом количестве присутствуют и в других слоях НКТ. В 3-м и 4-м слоях преобладают нейроны с OFF-центром. Это сине-жёлтая или сине-красная + зелёная. В 5-м и 6-м слоях представлены нейроны с ON-центрами в основном красно-зелёные. Рецептивные поля клеток наружного коленчатого тела обладают такими же рецептивными полями, как и ганглиозные клетки.

Отличие этих рецептивных полей от ганглиозных клеток:

1. В размерах рецептивных полей. Клетки наружного коленчатого тела имеют меньшие размеры.

2. У некоторых нейронов НКТ появляется дополнительная тормозная зона, окружающая периферию.

Для клеток с ON-центром такая дополнительная зона будет иметь знак реакции, совпадающий с центром. Эти зоны только у некоторых нейронов, образуются за счёт усиления латерального торможения между нейронами НКТ. Эти слои – основа выживания конкретного вида. У человека – шесть слоёв, у хищников – четыре.

Детекторная теория появилась в конце 1950-х гг. В сетчатке лягушки (в ганглиозных клетках) были обнаружены реакции, которые непосредственно были связаны с поведенческими реакциями. Возбуждение определённых ганглиозных клеток сетчатки приводило к поведенческим реакциям. Этот факт позволил создать концепцию, согласно которой изображение, представленное на сетчатке, обрабатывается специфически настроенными на элементы изображения ганглиозными клетками. Такие ганглиозные клетки имеют специфическое ветвление дендритов, которое соответствует определённой структуре рецептивного поля. Были обнаружены несколько типов таких ганглиозных клеток. В дальнейшем нейроны, обладающие таким свойством, стали называть детекторными. Таким образом, детектор – это нейрон, реагирующий на определённое изображение или его часть. Оказалось, что и у других, более высокоразвитых животных есть возможность выделять специфический символ.

1. Детекторы выпуклого края – клетка активировалась при появлении крупного объекта в поле зрения;

2. Детектор движущегося мелкого контраста – его возбуждение приводило к попытке захвата это объекта; по контрасту соответствует захватываемым объектам; эти реакции связаны с пищевыми реакциями;

3. Детектор затемнения – вызывает оборонительную реакцию (появление крупных врагов).

Эти ганглиозные клетки сетчатки настроены выделять определённые элементы окружающей среды.

Группа исследователей, работавших над этой темой: Летвин, Матурано, Моккало, Питц.

Детекторными свойствами обладают и нейроны других сенсорных систем. Большинство детекторов зрительной системы связано с выделением движения. У нейронов усиливаются реакции при увеличении скорости движения объектов. Детекторы были обнаружены и у птиц, и у млекопитающих. Детекторы других животных непосредственно связаны с окружающим пространством. У птиц были обнаружены детекторы горизонтальной поверхности, что связано с необходимостью приземления на горизонтальные объекты. Также были обнаружены детекторы вертикальных поверхностей, которые обеспечивают собственные движения птиц в сторону этих объектов. Оказалось, что чем выше животное в эволюционной иерархии, тем выше находятся детекторы, т.е. эти нейроны уже могут находиться не только в сетчатке, но и в высших отделах зрительной системы. У высших млекопитающих: у обезьян и человека – детекторы находятся в зрительной коре. Это важно, поскольку специфический способ, который обеспечивает реакции на элементы внешней среды, переносится на вышележащие уровни мозга, и при этом каждому виду животных присущи собственные специфические виды детекторов. В дальнейшем оказалось, что в онтогенезе детекторные свойства сенсорных систем формируются под влиянием окружающей среды. Для демонстрации этого свойства были проделаны эксперименты исследователями, Нобелевскими лауреатами, Хьюбелом и Визелом. Были проделаны эксперименты, доказавшие, что формирование детекторных свойств происходит в самом раннем онтогенезе. Например, использовали три группы котят: одна контрольная и две экспериментальные. Первая экспериментальная была помещена в условия, где в основном присутствовали горизонтально ориентированные линии. Вторая экспериментальная была помещена в условия, где в основном были горизонтальные линии. Исследователи проверяли, какие нейроны сформировались в коре у котят каждой группы. В коре у этих животных оказалось по 50% нейронов, которые активировались и горизонтальными, + 50% вертикальными. Животные, воспитанные в горизонтальной среде, имели в коре значительное количество нейронов, которые активировались горизонтальными объектами, практически не было нейронов, активировавшихся при восприятии вертикальных объектов. Во второй экспериментальной группе была аналогичная ситуация с горизонтальными объектами. У котят обеих горизонтальных групп появились определённые дефекты. Котята горизонтальной среды могли прекрасно прыгать по ступеньками и горизонтальными поверхностям, но плохо проводили движения относительно вертикальных объектов (ножка стола). У котят второй экспериментальной группы была соответствующая ситуация для вертикальных объектов. Данный эксперимент доказал:

1) формирование нейронов в раннем онтогенезе;

2) животное не может адекватно взаимодействовать.

Изменение поведения животных в изменяющейся среде. Каждое поколение имеет свой набор внешних стимулов, которые вырабатывают новый набор нейронов.

Специфические особенности зрительной коры

От клеток наружного коленчатого тела (имеет 6-слойную структуру) аксоны поступают к 4 слоям зрительной коры. Основная масса аксонов наружного коленчатого тела (НКТ) распределяется в четвёртом слое и его подслоях. От четвёртого слоя информация поступает к другим слоям коры. Зрительная кора сохраняет принцип ретинотопической проекции так же, как и НКТ. Вся информация от сетчатки поступает к нейронам зрительной коры. Нейроны зрительной коры, как и нейроны нижележащих уровней, имеют рецептивные поля. Структура рецептивных полей нейронов зрительной коры отличается от рецептивных полей НКТ и клеток сетчатки. Хьюбел и Визел также занимались изучением зрительной коры. Их работа позволила создать классификацию рецептивных полей нейронов зрительной коры (РПНЗрК). Х. и В. Обнаружили, что РПНЗрК имеют не концентрическую, а прямоугольную форму. Они могут быть ориентированы под разными углами, иметь 2 или 3 антагонистических зоны.

Такое рецептивное поле может выделять:

1. изменение освещённости, контраст - такие поля были названы простыми рецептивными полями ;

2. нейроны со сложными рецептивными полями – могут выделять те же самые объекты, что и простые нейроны, но при этом эти объекты могут находиться в любом месте сетчатки;

3. сверхсложные поля - могут выделять объекты, имеющие разрывы, границы или изменение формы объекта, т.е. сверхсложные рецептивные поля могут выделять геометрические формы.

Гештальты – нейроны, выделяющие подобразы.

Клетки зрительной коры могут только формировать некие элементы изображения. Откуда появляется константность, где появляется зрительный образ? Ответ был найден в ассоциативных нейронах, которые также связаны со зрением.

Зрительная система может выделять различные цветовые характеристики. Сочетание оппонентных цветов позволяет выделять различные оттенки. Обязательно участвует латеральное торможение.

Рецептивные поля имеют антогонистические зоны. Нейроны зрительной коры способны возбуждаться периферически на зелёный в то время, как середина возбуждается на действие красного источника. Действие зелёного будет вызывать тормозную реакцию, действие красного будет вызывать возбуждающую реакцию.

Зрительная система воспринимает не только чистые спектральные цвета, но и любые сочетания оттенков. Многие области коры больших полушарий имеют не только горизонтальное, но и вертикальное строение. Это было обнаружено в середине 1970-х гг. Это было показано для соматосенсорной системы. Вертикальная или колончатая организация. Оказалось, что зрительная кора имеет кроме слоёв ещё и вертикально ориентированные колонки. Совершенствование техники регистрации привело к проведению более тонких экспериментов. Нейроны зрительной коры кроме слоёв имеют ещё и горизонтальную организацию. Был проведён микроэлектрод строго перпендикулярно поверхности коры. Все основные зрительные поля в медиальной части затылочной коры. Поскольку рецептивные поля имеют прямоугольную организацию, точки, пятна, любые концентрически объекта не вызывают никакой реакции в коре.

Колонка – вид реакции, соседняя колонка тоже выделяет наклон линии, но от предыдущей он отличается на 7-10 градусов. Дальнейшие исследования показали, что рядом располагаются колонки, у которых угол изменяется с равным шагом. Около 20-22 соседних колонок будут выделять все наклоны от 0 до 180 градусов. Совокупность колонок, способных выделить все градации этого признака, назвали макроколонкой. Это были первые исследования, которые показали, что зрительная кора может выделять не только единичное свойство, но и комплекс – все возможные изменения признака. В дальнейших исследованиях было показано, что рядом с макроколонками, фиксирующими угол, располагаются макроколонки, способные выделять и другие свойства изображения: цвета, направление движения, скорость движения, а также макроколонки, связанные с правой или левой сетчаткой (колонки глазодоминантности). Таким образом, все макроколонки компактно располагаются на поверхности коры. Было предложено совокупности макроколонок называть гиперколонками. Гиперколонки могут анализировать набор признаков изображений, находящихся в локальном участке сетчатки. Гиперколонки – модуль, который выделяет набор признаков в локальном участке сетчатки (1 и 2 идентичные понятия).

Таким образом, зрительная кора состоит из набора модулей, которые анализируют свойства изображений и создают подобразы. Зрительная кора – не конечный этап переработки зрительной информации.

Свойства бинокулярного зрения (стереозрения)

Эти свойства облегчают и животному, и человеку восприятие удалённости объектов и глубины пространства. Для того, чтобы эта способность проявлялась, обязательны движения глаз (конвергентно-дивергентные) на центральную ямку сетчатки. При рассмотрении удалённого объекта происходит разведение (дивергенция) оптических осей и сведение для близко расположенных (конвергенция). Такая система бинокулярного зрения представлена у разных видов животных. Наиболее совершенна эта система у тех животных, у которых глаза располагаются на фронтальной поверхности головы: у многих хищных животных, птиц, приматов, большинство хищных обезьян.

У другой части животных глаза располагаются латерально (копытные, млекопитающие и т.д.). Для них очень важно иметь большой объём восприятия пространства.

Это связано со средой обитания и их местом в пищевой цепочке (хищник - жертва).

При таком способе восприятия пороги восприятия снижаются на 10-15%, т.е. у организмов, обладающих этим свойством, появляется преимущество в точности собственного движений и соотнесении их с движениями цели.

Также существуют монокулярные признаки глубины пространства.

Свойства бинокулярного восприятия:

1. Фузия – слияние полностью идентичных изображений двух сетчаток. При этом объект воспринимается двухмерным, плоскостным.

2. Слияние двух неидентичных изображений сетчаток. При этом объект воспринимается объемно, трехмерно.

3. Соперничество полей зрения. От правой и левой сетчатки поступают два разных изображения. Мозг не может совместить два разных изображения, и поэтому они воспринимаются поочередно.

Остальные точки сетчатки – диспаратные. Степень диспаратности и будет определять, воспринимается ли объект трёхмерно или он будет восприниматься при соперничестве полей зрения. Если диспаратность невелика, то изображение воспринимается трёхмерно. Если диспаратность очень высокая, то объект не воспринимается.

Такие нейроны обнаружены не в 17-м, а в 18-м и 19-м полях.

Чем отличаются рецептивные поля таких клеток: для таких нейронов в зрительной коре рецептивные поля либо простые, либо сложные. В этих нейронах наблюдается различие рецептивных полей от правой и левой сетчатки. Диспаратность рецептивных полей таких нейронов может быть либо вертикальной, либо горизонтальной (см. след. страницу):


Это свойство позволяет лучше адаптироваться.

(+) Зрительная кора не позволяет говорить о том, что в ней формируется зрительный образ, то константность отсутствует во всех областях зрительной коры.


Похожая информация.


Ганглиозные клетки сетчатки проецируют свои отростки в латеральное коленчатое тело, где они формируют ретинотопическую карту. У млекопитающих латеральное коленчатое тело состоит из 6 слоев, каждый из которых иннервируется либо одним, либо другим глазом и получает сигнал от различных подтипов ганглиозных клеток, образующих слои крупноклеточных (magnocellular), мелкоклеточных (parvocellular) и кониоклеточных (koniocellular) нейронов. Нейроны латерального коленчатого тела имеют рецептивные поля типа «центр-фон», подобно ганглиозным клеткам сетчатки.

Нейроны латерального коленчатого тела проецируются и формируют ретинотопическую карту в первичной зрительной коре V 1 , также называемой «зоной 17» или полосатой корой (striatecortex). Рецептивные поля кортикальных клеток, вместо уже привычной организации рецептивных полей по типу «центр-фон», состоят из линий, или краев, что является принципиально новым шагом в анализе зрительной информации. Шесть слоев V 1 имеют особенности строения: афферентные волокна из коленчатого тела заканчиваются в основном в слое 4 (и некоторые в слое 6); клетки в слоях 2, 3 и 5 получают сигналы от кортикальных нейронов. Клетки слоев 5 и б проецируют отростки в подкорковые области, а клетки 2 и 3 слоя - в другие корковые зоны. Каждая вертикальная колонка клеток функционирует как модуль, получая исходный зрительный сигнал от определенного места в пространстве и посылая переработанную зрительную информацию во вторичные зрительные зоны. Колоночная организация зрительной коры очевидна, так как локализация рецептивных полей остается одинаковой на протяжении всей глубины коры, и зрительная информация от каждого глаза (правого или левого) всегда обрабатывается строго определенными колонками.

Было описано два класса нейронов в области V 1 , которые различаются по своим физиологическим свойствам. Рецептивные поля простых клеток удлинены и содержат сопряженные "on"- и "off""-зоны. Поэтому наиболее оптимальным стимулом для простой клетки является особым образом ориентированные пучки света или тени. Сложная клетка отвечает на определенным образом ориентированную полоску света; эта полоска может находиться в любой области рецептивного поля. Возникающее в результате распознавания изображения ингибирование простых или сложных клеток несет еще более детализированную информацию о свойствах сигнала, такую как наличие линии определенной длины или определенного угла в пределах данного рецептивного поля.

Рецептивные поля простой клетки образуются в результате конвергенции значительного количества афферентов из коленчатого тела. Примыкающие друг к другу центры нескольких рецептивных полей образуют одну корковую рецептивную зону. Поле сложной клетки зависит от сигналов простой клетки и других кортикальных клеток. Последовательное изменение организации рецептивных полей от сетчатки к латеральному коленчатому телу и затем к простым и сложным кортикальным клеткам говорит об иерархии в обработке информации, посредством чего ряд нейронных конструкций одного уровня интегрируется на следующем, где на основе исходной информации формируется еще более абстрактная концепция. На всех уровнях зрительного анализатора особое внимание уделяется контрастности и определению границ изображения, а не общей освещенности глаза. Таким образом, сложные клетки зрительной коры могут «видеть» линии, являющиеся границами прямоугольника, и их мало волнует абсолютная интенсивность света внутри этого прямоугольника. Серия четких и продолжающих друг друга исследований в области механизмов восприятия зрительной информации, начатая пионерскими работами Куффлера с сетчаткой, была продолжена на уровне зрительной коры Хьюбелем и Визелем. Хьюбель дал яркое описание ранних экспериментов на зрительной коре в лаборатории Стивена Куффлера в Университете Джона Хопкинса (США) в 50-х годах XX века. С тех пор наше понимание физиологии и анатомии коры больших полушарий значительно развилось благодаря экспериментам Хьюбеля и Визеля, а также благодаря большому количеству работ, для которых их исследования были отправной точкой или источником вдохновения. Наша цель - дать краткое, повествовательное описание кодирования сигнала и архитектуры коры в аспекте восприятия, основанное на классических работах Хьюбеля и Визеля, а также на более поздних экспериментах, выполненных ими, их коллегами, а также многими другими. В этой главе мы лишь дадим схематический набросок функциональной архитектуры латерального коленчатого тела и зрительной коры, а также их роли в обеспечении первых шагов анализа зрительных сиен: определение линий и форм на основе поступающего из сетчатки сигнала в форме «центр-фон».

При продвижении от сетчатки к латеральному коленчатому телу, а затем и к коре полушарий возникают вопросы, которые стоят вне пределов техники. В течение длительного время было общепризнанным, что для понимания функционирования любой части нервной системы необходимо знание о свойствах составляющих ее нейронов: каким образом они проводят сигналы и несут информацию, каким образом передают полученную информацию от одной клетки к другой посредством синапсов. Однако мониторинг активности только одной отдельной клетки вряд ли может быть результативным методом для изучения высших функций, где вовлечено большое количество нейронов. Аргумент, который здесь использовался и продолжает использоваться время от времени, следующий: мозг содержит около 10 10 или более клеток. Даже самая простая задача или событие вовлекают сотни тысяч нервных клеток, расположенных в различных частях нервной системы. Каковы же шансы физиолога суметь проникнуть в суть механизма формирования сложного действия в головном мозге, если он может одновременно исследовать только одну или несколько нервных клеток, безнадежно малую долю от общего количества?

При более тщательном изучении логика подобных аргументов относительно основной сложности исследования, связанной с большим количеством клеток и сложными высшими функциями, уже не кажется такой безупречной. Как это часто происходит, появляется упрощающий принцип, открывающий новый и ясный взгляд на проблему. Ситуацию в зрительной коре упрощает то, что основные клеточные типы расположены отдельно друг от друга, в виде хорошо организованных и повторяющихся единиц. Эта повторяющаяся структура нервной ткани тесно переплетена с ретинотопической картой зрительной коры. Таким образом, соседние точки сетчатки проецируются на соседние точки поверхности зрительной коры. Это означает, что зрительная кора организована таким образом, чтобы для каждого мельчайшего сегмента зрительного поля находился набор нейронов для анализа информации и ее передачи. Кроме того, при помощи методов, которые позволяют выделить функционально связанные клеточные ансамбли, были выделены паттерны корковой организации более высокого уровня. В самом деле, архитектура коры определяет структурную основу корковой функции, поэтому новые анатомические подходы вдохновляют на новые аналитические исследования. Таким образом, прежде чем мы опишем функциональные связи зрительных нейронов, полезно вкратце резюмировать общую структуру центральных зрительных путей, начинающихся от ядер латерального коленчатого тела.

Латеральное коленчатое тело

Волокна зрительного нерва начинаются от каждого глаза и заканчиваются на клетках правого и левого латерального коленчатого тела (ЛКТ) (рис. 1), имеющего четко различимую слоистую структуру («коленчатый» - geniculate - означает «изогнутый подобно колену»). В ЛКТ кошки можно увидеть три явных, хорошо различимых слоя клеток (А, А 1 , С), один из которых (А 1) имеет сложное строение и подразделяется далее. У обезьян и других приматов, включая

человека, ЛКТ имеет шесть слоев клеток. Клетки в более глубоких слоях 1 и 2 больше по размерам, чем в слоях 3, 4, 5 и 6, из-за чего эти слои и называют соответственно крупноклеточными (M, magnocellular) и мелкоклеточными (Р, parvocellular). Классификация коррелирует также с большими (М) и маленькими (Р) ганглиозными клетками сетчатки, которые посылают свои отростки в ЛКТ. Между каждым M и Р слоями лежит зона очень маленьких клеток: интраламинарный, или кониоклеточный (К, koniocellular) слой. Клетки К слоя отличаются от M и Р клеток по своим функциональным и нейрохимическим свойствам, образуя третий канал информации в зрительную кору.

Как у кошки, так и у обезьяны каждый слой ЛКТ получает сигналы либо от одного, либо от другого глаза. У обезьян слои 6, 4 и 1 получают информацию от контралатерального глаза, а слои 5, 3 и 2 - от ипсилатерального. Разделение хода нервных окончаний от каждого глаза в различные слои было показано при помощи электрофизиологических и целого ряда анатомических методов. Особенно удивительным является тип ветвления отдельного волокна зрительного нерва при инъекции в него фермента пероксидазы хрена (рис. 2).

Образование терминалей ограничено слоями ЛКТ для этого глаза, без выхода за границы этих слоев. Из-за систематического и определенным образом проводимого разделения волокон зрительного нерва в районе хиазмы, все рецептивные поля клеток ЛКТ расположены в зрительном поле противоположной стороны.

Рис. 2. Окончания волокон зрительного нерва в ЛКТ кошки. В один из аксонов от зоны с "on" центром контралатерального глаза была введена пероксидаза хрена. Веточки аксона заканчиваются на клетках слоев А и С, но не А 1 .

Рис. 3. Рецептивные поля клеток ШТ. Концентрические рецептивные поля клеток ЛКТ напоминают поля ганглиозных клеток в сетчатке, разделяясь на поля с "on"- и "off""-центром. Показаны ответы клетки с "on"-центром ЛКТ кошки. Полоской над сигналом показана продолжительность освещения. Центральные и периферические зоны нивелируют эффекты друг друга, поэтому диффузное освещение всего рецептивного поля дает только слабые ответы (нижняя запись), еще менее выраженные, чем в ганглиозных клетках сетчатки.

Карты зрительных полей в латеральном коленчатом теле

Важной топографической особенностью является высокая упорядоченность в организации рецептивных полей в пределах каждого слоя ЛКТ. Соседние регионы сетчатки образуют связи с соседними клетками ЛКТ, так что рецептивные поля близрасположенных нейронов ЛКТ перекрываются на большой площади. Клетки центральной зоны сетчатки кошки (регион, где сетчатка кошки имеет маленькие по размеру рецептивные поля с малыми центрами), а также зрительной ямки обезьяны образуют связи с относительно большим количеством клеток в пределах каждого слоя ЛКТ. Подобное же распределение связей было обнаружено и у человека при помощи ЯМР. Число клеток, связанных с периферическими регионами сетчатки, относительно мало. Такая избыточная представленность зрительной ямки отражает высокую плотность фоторецепторов в той зоне, которая необходима для зрения с максимальной остротой. Хотя, наверное, число волокон зрительного нерва и число клеток ЛКТ примерно равны, тем не менее каждый нейрон ЛКТ получает конвергирующие сигналы от нескольких волокон зрительного нерва. Каждое волокно зрительного нерва в свою очередь образует дивергирующие синаптические связи с несколькими нейронами ЛКТ.

Однако каждый слой не только топографически упорядочен, но также и клетки разных слоев находятся в ретинотопическом отношении друг к другу. То есть, если продвигать электрод строго перпендикулярно к поверхности ЛКТ, то сначала будут регистрироваться активность клеток, получающих информацию от соответствующих зон одного, а затем и другого глаза, по мере того, как микроэлектрод пересекает один слой ЛКТ за другим. Расположение рецептивных полей находится в строго соответствующих позициях на обеих сетчатках, т. е. они представляют одну и ту же область зрительного поля. В клетках ЛКТ не происходит значительного смешивания информации от правого и левого глаза и взаимодействия между ними, лишь небольшое количество нейронов (которые имеют рецептивные поля в обоих глазах) возбуждаются исключительно бинокулярно.

Удивительно то, что ответы клеток ЛКТ не имеют разительных отличий от сигналов ганглиозных клеток (рис. 3). Нейроны ЛКТ также имеют концентрически организованные антагонизирующие рецептивные поля, либо с "off"-, либо с "on"-центром, но механизм контраста отрегулирован тоньше, за счет большего соответствия между

тормозными и возбуждающими зонами. Таким образом, подобно ганглиозным клеткам сетчатки, для нейронов ЛКТ оптимальным стимулом является контраст, однако они реагируют еще слабее на общее освещение. Изучение рецептивных полей нейронов ЛКТ еще не завершено. Например, в ЛКТ найдены нейроны, вклад которых в работу ЛКТ не был установлен, а также пути, идущие от коры вниз к ЛКТ. Корковая обратная связь необходима для синхронизированной активности нейронов ЛКТ.

Функциональные слои ЛКТ

Почему в ЛКТ на каждый глаз приходится больше одного слоя? Сейчас обнаружено, что нейроны в разных слоях имеют различные функциональные свойства. Например, клетки, находящиеся в четвертых дорзальных мелкоклеточных слоях ЛКТ обезьяны, подобно Ρ ганглиозным клеткам, способны отвечать на свет разных цветов, показывая хорошую цветовую дискриминацию. И наоборот, слои 1 и 2 (крупноклеточные слои) содержат М-подобные клетки, которые дают быстрые («живые») ответы и нечувствительны к цвету, в то время как К слои получают сигналы от "blue-on" ганглиозных клеток сетчатки и могут играть особую роль в цветном зрении. У кошек X и Y волокна (см. раздел «Классификация ганглиозных клеток» заканчиваются в различных подслоях А, С и А 1 , поэтому специфическая инактивация слоя А, но не С, резко снижает точность глазодвижений. Клетки с "on"- и "off"-центром также подразделяются на различные слои в ЛКТ норки и хорька, и, в некоторой степени, у обезьян. Резюмируя вышесказанное, можно сказать, что ЛКТ является перевалочной станцией, в которой аксоны ганглиозных клеток сортируются таким образом, что соседние клетки получают сигналы от одинаковых регионов зрительных полей, и нейроны, перерабатывающие информацию, организованы в виде кластеров. Таким образом, в ЛКТ очевидной является анатомическая база для параллельной переработки (parallelprocessing) зрительной информации.

Цитоархитектоника зрительной коры

Зрительная информация поступает в кору и ЛКТ через оптическую радиацию. У обезьян оптическая радиация заканчивается на складчатой пластинке, толщиной около 2 мм (рис. 4). Этот регион мозга - известный как первичная зрительная кора, зрительная зона 1 или V 1 - также называется полосатой корой, или «зоной 17». Более старая терминология базировалась на анатомических критериях, разработанных еще в начале XX века. V 1 лежит сзади, в области затылочной доли, и может быть распознана при поперечном разрезе по своему особому внешнему виду. Пучки волокон в этой области формируют полоску, ясно видную невооруженным глазом (поэтому зона и называется «полосатой», рис. 4В). Соседние зоны вне зоны полосатости также связаны со зрением. Зона, непосредственно окружающая зону V, называется зоной V 2 (или «зона 18») и получает сигналы из зоны V, (см. рис. 4С). Четкие границы так называемой экстрастриарноq зрительной коры (V 2 -V 5) нельзя установить при помощи визуального исследования мозга, хотя для этого разработан ряд критериев. Например, в V 2 полосатая исчерченность исчезает, большие клетки расположены поверхностно, и грубые, косо расположенные миелиновые волокна видны в более глубоких слоях..

Каждая зона имеет собственное представление зрительного поля сетчатки, спроецированное строго определенным, ретинотопическим образом. Карты проекций были составлены еще в эпоху, когда не было возможно проводить анализ активности отдельных клеток. Поэтому для картирования использовалось освещение пучками света небольших участков сетчатки и регистрация активности коры при помощи большого электрода. Эти карты, а также их современные аналоги, составленные недавно при помощи методов визуализации головного мозга, таких как позитронно-эмиссионная томография и функциональный ядерно-магнитный резонанс, показали, что площадь коры, отведенная на представление центральной ямки, гораздо больше по размерам, чем площадь, отведенная на всю остальную сетчатку. Эти находки, в принципе, соответствовали ожиданиям, поскольку распознавание образов корой осуществляется в основном за счет переработки информации от плотно расположенных в зоне ямки фоторецепторов. Такое представление аналогично расширенному представлению руки и лица в области первичной соматосенсорной коры. Ямка сетчатки проецируется в затылочный полюс коры больших полушарий. Карта периферии сетчатки распространяется в переднем направлении вдоль медиальной поверхности затылочной доли (рис. 5). Из-за перевернутой картины, образуемой на сетчатке при помощи хрусталика, верхнее зрительное поле проецируется на нижнюю область сетчатки и передается в область V 1 , расположенную ниже шпорной борозды; нижнее зрительное поле проецируется над шпорной бороздой.

На срезах коры нейроны могут быть классифицированы по их форме. Две основные группы нейронов образуют звездчатые и пирамидные клетки. Примеры этих клеток показаны на рис. 6В. Основные различия между ними заключаются в длине аксонов и в форме тел клеток. Аксоны пирамидных клеток длиннее, спускаются в белое вещество, покидая кору; отростки же звездчатых клеток заканчиваются в ближайших зонах. Эти две группы клеток могут иметь и другие различия, такие как наличие или отсутствие шипиков на дендритах, которые обеспечивают их функциональные свойства. Есть и другие, причудливо названные нейроны (двухбукетные клетки, клетки-люстры, корзинчатые клетки, клетки-полумесяцы), а также клетки нейроглии. Их характерной особенностью является то, что отростки этих клеток направляются в основном в радиальном направлении: вверх и вниз через толщу коры (под соответствующим утлом к поверхности). И наоборот, многие (но не все) их латеральные отростки короткие. Соединения между первичной зрительной корой и корой высшего порядка осуществляется при помощи аксонов, которые проходят в виде пучков через белое вещество, находящееся под клеточными слоями

Рис. 7. Связи зрительной коры. (А) Слои клеток с различными входящими и исходящими отростками. Отметим, что исходные отростки из ЛКТ в основном прерываются в 4 слое. Отростки из ЛКТ, идущие от крупноклеточных слоев, преимущественно прерываются в 4С и 4В слоях, в то время как отростки от мелкоклеточных прерываются в 4А и 4С. Простые клетки расположены в основном в слоях 4 и 6, комплексные клетки - в слоях 2, 3, 5 и 6. Клетки слоев 2, 3 и 4В посылают аксоны в другие корковые зоны; клетки в слоях 5 и 6 посылают аксоны к верхнему холмику и ЛКТ. (В) Типичная ветвистость аксонов ЛКТ и кортикальных нейронов кошки. Кроме подобных вертикальных связей, многие клетки имеют длинные горизонтальные связи, идущие в пределах одного слоя к удаленным регионам коры.

Входящие, исходящие пути и послойная организация коры

Основной особенностью коры млекопитающих является то, что клетки здесь расположены в виде 6 слоев в пределах серого вещества (рис. 6А). Слои сильно различаются по внешнему виду, в зависимости от плотности расположения клеток, а также толщины каждой из зон коры. Входящие пути показаны на рис. 7A с левой стороны. Исходя из ЛКТ, волокна в основном заканчиваются в слое 4 с небольшим количеством связей, образуемых также в слое 6. Поверхностные слои получают сигналы из области подушки таламуса (pulvinarzone) или других зон таламуса. Большое количество клеток коры, особенно в области слоя 2, а также в верхних частях слоев 3 и 5 получают сигналы от нейронов, также расположенных в пределах коры. Основная масса волокон, идущих от ЛКТ в слой 4, затем разделяется между различными подслоями.

Исходящие из слоев 6, 5, 4, 3 и 2 волокна показаны справа на рис.7А. Клетки, посылаюшие эфферентные сигналы из коры, могут также управлять внутри корковыми соединениями между разными слоями. Например, аксоны клетки из слоя 6, кроме ЛКТ, могут также направляться в один из других кортикальных слоев, в зависимости от типа ответа этой клетки 34) . На основании подобного строения зрительных путей можно представить следующий путь зрительного сигнала: информация с сетчатки передается на клетки коры (в основном, в слой 4) аксонами клеток ЛКТ; информация передается из слоя в слой, от нейрона к нейрону по всей толщине коры; переработанная информация пересылается в другие зоны коры при помощи волокон, направляющихся вглубь белого вещества и возвращающихся обратно в область коры. Таким образом, радиальная или вертикальная организация коры дает нам основания полагать, что колонки нейронов работают как отдельные вычислительные единицы, обрабатывая различные детали зрительных сцен и пересылая полученную информацию далее в другие регионы коры.

Разделение входящих волокон от ЛКТ в слое 4

Афферентные волокна ЛКТ заканчиваются в слое 4 первичной зрительной коры, который имеет сложную организацию и может быть исследован как физиологически, так и анатомически. Первой особенностью, которую мы хотим продемонстрировать, является разделение входящих волокон, идущих от разных глаз. У взрослых кошек и обезьян клетки в пределах одного слоя ЛКТ, получая сигналы от одного глаза, посылают отростки к строго определенным скоплениям клеток коры в слое 4С, отвечающим именно за этот глаз. Скопления клеток сгруппированы в виде чередующихся полосок или пучков кортикальных клеток, получающих информацию исключительно от правого или левого глаза. В более поверхностно и глубже расположенных слоях нейроны управляются обоими глазами, хотя обычно с преобладанием одного из них. Хьюбель и Визель провели оригинальную демонстрацию разделения информации от разных глаз и преобладания одного из них в первичной зрительной коре при помощи электрофизиологических методов. Они использовали термин «глазодоминантные колонки» (oculardominancecolumns) при описании своих наблюдений, придерживаясь концепции кортикальных колонок, разработанной Маунткаслом для соматосенсорной коры. Серия экспериментальных методик была разработана для демонстрации чередующихся групп клеток в слое 4, получающих информацию от правого или левого глаза. Вначале было предложено нанести небольшое повреждение в пределах только одного слоя ЛКТ (напомним, что каждый слой получает информацию только от одного глаза). Если это сделать, то дегенерирующие терминали появляются в слое 4, образуя определенный паттерн чередующихся пятен, которые соответствуют зонам, управляемым глазом, посылающим информацию в поврежденную область ЛКТ. Позднее потрясающая демонстрация существования особого паттерна глазного доминирования была выполнена, используя транспорт радиоактивных аминокислот из одного глаза. Эксперимент состоит в том, что в глаз вводится аминокислота (пролин или лецитин), содержащая атомы радиоактивного трития. Инъекция проводится в стекловидное тело глаза, из которого аминокислота захватывается телами нервных клеток сетчатки и включается в состав белка. Со временем помеченный таким образом белок транспортируется в ганглиозные клетки и по волокнам зрительного нерва в их терминали в пределах ЛКТ. Замечательной особенностью является то, что эта радиоактивная метка также передается от нейрона к нейрону через химические синапсы. В конечном итоге метка попадает в окончания волокон ЛКТ в пределах зрительной коры.

На рис. 8 показано расположение в пределах слоя 4 радиоактивных терминалей, образованных аксонами клеток ЛКТ, связанных с глазом, в который вводилась метка

Рис. 8. Глазодоминантные колонки в коре обезьяны, полученные при помощи введения радиоактивного про лина в один глаз. Ауторадиограммы, снятые при темнопольном освещении, где белым показаны зерна серебра. (А) Сверху рисунка срез проходит через слой 4 зрительной коры под углом к поверхности, образуя перпендикулярный срез колонок. В центре слой 4 был срезан горизонтально, показывая, что колонка состоит из удлиненных пластинок. (В) Реконструкция из множества горизонтальных срезов слоя 4С у другой обезьяны, у которой инъекция проводилась в илсилатеральный глаз. (Любой горизонтальный разрез может выявить

лишь часть слоя 4, что обусловлено кривизной коры.) Как в А, так и в В колонки зрительного доминирования выглядят как полоски равной ширины, получающие информацию либо от одного, либо другого глаза.

располагают непосредственно над зрительной корой, поэтому такие участки выглядят как белые пятна на темном фоне фотографии). Пятна от меток перемежаются с зонами без меток, которые получают информацию от контралатерального глаза, куда не вводилась метка. Расстояние от центра до центра между пятнами, которые соответствуют глазодоминантным колонкам, составляет приблизительно 1 мм.

На клеточном уровне сходная структура была выявлена в слое 4 при помощи введения пероксидазы хрена в отдельные направляющиеся в кору аксоны нейронов ЛКТ. Аксон, показанный на рис. 9, идет от нейрона ЛКТ с "off"-центром, отвечающим короткими сигналами на тени и движущиеся пятна. Аксон заканчивается в двух различных группах отростков в слое 4. Группы меченых отростков отделены пустой немеченной зоной, соответствующей по своим размерам территории, отвечающей за другой глаз. Подобного рода морфологические исследования расширяют границы и позволяют более глубоко понять оригинальное описание колонок глазного доминирования, составленное Хьюбелем и Визелем в 1962 году.


Литература

1. о Hubel, D. H. 1988. Eye, Brain and Vision. Scientific American Library. New York.

2.о Ferster, D., Chung, S., and Wheat, H. 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380: 249-252.

3. о Hubel, D. H., and Wiesel, T. N. 1959. Receptive fields of single neurones in the cat"s striate cortex. /. Physiol. 148: 574-591.

4. о Hubel, D.H., and Wiesel, T.N. 1961. Integrative action in the cat"s lateral geniculate body. /. Physiol. 155: 385-398.

5. о Hubel, D. H., and Wiesel, T. N. 1962. Receptive fields, binocular interaction and functional architecture in the cat"s visual cortex. /. Physiol. 160: 106-154.



Понравилась статья? Поделиться с друзьями: