Таблица распределения дарбина уотсона как пользоваться. Приложение А

Критерий Дарбина - Уотсона (или DW-критерий) - статистический критерий, используемый для нахождения автокорреляции первого порядка элементов исследуемой последовательности. Наиболее часто применяется при анализе временных рядов и остатков регрессионных моделей. Критерий назван в честь Джеймса Дарбина и Джеффри Уотсона. Критерий Дарбина - Уотсона рассчитывается по следующей формуле

где ρ1 - коэффициент автокорреляции первого порядка.

В случае отсутствия автокорреляции d = 2, при положительной автокорреляции d стремится к нулю, а при отрицательной - к 4:

На практике применение критерия Дарбина - Уотсона основано на сравнении величины d с теоретическими значениями dL и dU для заданных числа наблюдений n, числа независимых переменных модели k и уровня значимости α.

Если d < dL, то гипотеза о независимости случайных отклонений отвергается (следовательно присутствует положительная автокорреляция);

Если d > dU, то гипотеза не отвергается;

Если dL < d < dU, то нет достаточных оснований для принятия решений.

Когда расчетное значение d превышает 2, то с dL и dU сравнивается не сам коэффициент d, а выражение (4 − d).

Также с помощью данного критерия выявляют наличие коинтеграции между двумя временными рядами. В этом случае проверяют гипотезу о том, что фактическое значение критерия равно нулю. С помощью метода Монте-Карло были получены критические значения для заданных уровней значимости. В случае, если фактическое значение критерия Дарбина - Уотсона превышает критическое, то нулевую гипотезу об отсутствии коинтеграции отвергают.

Недостатки :

Не способен выявлять автокорреляцию второго и более высоких порядков.

Даёт достоверные результаты только для больших выборок.

13. Соизмеримые показатели тесноты связи

К соизмеримым показателям тесноты связи относятся:

1) коэффициенты частной эластичности;

2) стандартизированные частные коэффициенты регрессии;

3) частный коэффициент детерминации.

Если факторные переменные имеют несопоставимые единицы измерения, то связь между ними измеряется с помощью соизмеримых показателей тесноты связи. С помощью соизмеримых показателей тесноты связи характеризуется степень зависимости между факторной и результативной переменными в модели множественной регрессии.

Коэффициент частной эластичности рассчитывается по формуле:

– среднее значение факторной переменной xi по выборочной совокупности,

– среднее значение результативной переменной у по выборочной совокупности;

– первая производная результативной переменной у по факторной переменной х.

Частный коэффициент эластичности измеряется в процентах и характеризует объём изменения результативной переменной у при изменении на 1 % от среднего уровня факторной переменной xiпри условии постоянства всех остальных факторных переменных, включённых в модель регрессии.

Для линейной модели регрессии частный коэффициент эластичности рассчитывается по формуле:

где βi– коэффициент модели множественной регрессии.

Для того чтобы рассчитать стандартизированные частные коэффициенты регрессии, необходимо построить модель множественной регрессии в стандартном (нормированном) масштабе. Это означает, что все переменные, включённые в модель регрессии, стандартизируются с помощью специальных формул. Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение β.

Факторная переменная х переводится в стандартизированный масштаб по формуле:

где xij – значение переменной xj в i-том наблюдении;

G(xj) – среднеквадратическое отклонение факторной переменной xi;

Результативная переменная у переводится в стандартизированный масштаб по формуле:

где G(y) – среднеквадратическое отклонение результативной переменной у.

Стандартизированные частные коэффициенты регрессии характеризуют, на какую долю своего среднеквадратического отклонения G(y) изменится результативная переменная у при изменении факторной переменной х на величину своего среднеквадратического отклонения G(x), при условии постоянства всех остальных факторных переменных, включённых в модель регрессии.

Стандартизированный частный коэффициент регрессии характеризует степень непосредственной или прямой зависимости между результативной и факторной переменными. Но в связи с тем, что между факторными переменными, включёнными в модель множественной регрессии, существует зависимость, факторная переменная оказывает не только прямое, но и косвенное влияние на результативную переменную.

Частный коэффициент детерминации используется для характеристики степени косвенного влияния факторной переменной х на результативную переменную у:

где βi– стандартизированный частный коэффициент регрессии;

r(xixj) – коэффициент частной корреляции между факторными переменными xi и xj.

Частный коэффициент детерминации характеризует, на сколько процентов вариация результативной переменной вызвана вариацией i-ой факторной переменной, включённой в модель множественной регрессии, при условии постоянства всех остальных факторных переменных, включённых в модель регрессии.

Стандартизированные частные коэффициенты регрессии и частные коэффициенты эластичности могут давать различные результаты. Это несовпадение может быть объяснено, например, слишком большой величиной среднеквадратического отклонения одной из факторных переменных или эффектом неоднозначного воздействия одной из факторных переменных на результативную переменную.

Статистическая значимость коэффициентов регрессии и близкое к единице значение коэффициента детерминации R 2 не гарантируют высокое качество уравнения регрессии. Для иллюстрации этого факта весьма нагляден пример, в котором анализируется зависимость реального объема потребления CONS (млрд. $, в ценах 1982 года) от численности населения POP (млн. чел.) в США в 1931-1990 годах. Корреляционное поле статистических данных изображено на рис1.

Рис.1. Корреляционное поле статистических данных

Линейное уравнение регрессии, построенное по МНК по реальным статистическим данным, имеет вид: СONS =-1817,3 + 16,7РОР. Стандартные ошибки коэффициентов S b 0 = 84,7, S b 1 =0,46. Следовательно, их t-статистики t b 0 =-21,4 , t b 1 =36,8. Эти значения существенно превышают 3, что свидетельствует о статистической значимости коэффициентов. Коэффициент детерминации R 2 = 0,96 (т.е. уравнение «объясняет» 96% дисперсии объема потребления). Однако по расположению точек на корреляционном поле видно, что зависимость между POP и CONS не является линейной, а будет скорее экспоненциальной. Для качественного прогноза уровня потребления линейная функция, безусловно, не может быть использована. Таким образом, при весьма хороших значениях t-статистик и F-статистики предложенное уравнение регрессии не может быть признано удовлетворительным (отметим, что R =0,96, скорее всего, в силу того, что и CONS и POP имели временной тренд). Можно ли определить причину этого?

Нетрудно заметить, что в данном случае не выполняются необходимые предпосылки МНК об отклонениях e i точек наблюдений от линии регрессии. Эти отклонения явно не обладают постоянной дисперсией и не являются взаимно независимыми. Нарушение необходимых предпосылок делает неточными полученные оценки коэффициентов регрессии, увеличивая их стандартные ошибки, и обычно свидетельствует о неверной спецификации самого уравнения.

Поэтому следующим этапом проверки качества уравнения регрессии является проверка выполнимости предпосылок МНК.

Оценивая линейное уравнение регрессии, мы предполагаем, что реальная взаимосвязь переменных линейна, а отклонения от регрессионной прямой являются случайными, независимыми друг от друга величинами с нулевым математическим ожиданием и постоянной дисперсией. Если эти предположения не выполняются, то оценки коэффициентов регрессии не обладают свойствами несмещенности, эффективности и состоятельности, и анализ их значимости будет неточным.

Причинами, по которым отклонения не обладают перечисленными выше свойствами, могут быть либо нелинейный характер зависимости между рассматриваемыми переменными, либо наличие не учтенного в уравнении существенного фактора. Действительно, при нелинейной зависимости между переменными отклонения от прямой регрессии не случайно распределены вокруг нее, а обладают определенными закономерностями, которые зачастую выражаются в существенном преобладании числа пар соседних отклонений e i-1 и e i с совпадающими знаками над числом пар с противоположными знаками.

При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки, а именно: условия статистической независимости отклонений между собой. Поскольку значения e i теоретического уравнения регрессии Y=β 0 +β 1 x+e остаются неизвестными ввиду неопределенности истинных значений коэффициентов регрессии, то проверяется статистическая независимость их оценок - отклонений e i , i=1,2,...,n. При этом обычно проверяется их некоррелированность, являющаяся необходимым, но недостаточным условием независимости. Причем проверяется некоррелированность не любых, а только соседних величин e i . Соседними обычно считаются соседние во времени (при рассмотрении временных рядов) или по возрастанию объясняющей переменной X (в случае перекрестной выборки) значения е i

На практике для анализа коррелированности отклонений вместо коэффициента корреляции используют тесно с ним связанную статистику Дарбина- Уотсона DW, рассчитываемую по формуле:

Если e i = е i-1 , то r ei . e-1 =1 и DW = 0. Если е i =-е i-1 ; , то r ei . e-1 =-1 и DW = 4. Во всех других случаях 0 < DW < 4 .

К этому же результату можно подойти с другой стороны. Если каждое следующее отклонение e i приблизительно равно предыдущему, e i -1 , то каждое слагаемое (e 1 -e i -1) в числителе дроби близко к нулю. Тогда, очевидно, числитель дроби будет существенно меньше знаменателя и, следовательно, статистика DW окажется близкой к нулю.

Например, для зависимости CONS и POP (рис. 1) DW = 0,045, что очень близко к нулю и подтверждает наличие положительной автокорреляции остатков первого порядка (линейной зависимости между остатками).

В другом крайнем случае, когда точки наблюдений поочередно отклоняются в разные стороны от линии регрессии, случай отрицательной автокорреляции остатков первого порядка. При случайном поведении отклонений можно предположить, что в одной половине случаев знаки последовательных отклонений совпадают, а в другой - противоположны. Так как абсолютная величина отклонений в среднем предполагается одинаковой, то можно считать, что в половине случаев e i = е i-1 , а в другой е i =-е i-1 . Тогда DW =2

Таким образом, необходимым условием независимости случайных отклонений является близость к двойке значения статистики Дарбина-Уотсона. Это означает, что построенная линейная регрессия, вероятно, отражает реальную зависимость.

Возникает вопрос, какие значения DW можно считать статистически близкими к двум?

Для ответа на этот вопрос разработаны специальные таблицы критических точек статистики Дарбина-Уотсона, позволяющие при данном числе наблюдений n, количе­стве объясняющих переменных m и заданном уровне значимости α определять границы приемлемости (критические точки) наблюдаемой статистики DW. Для заданных α,n,m в таблице указываются два числа: d l - нижняя граница и d u - верхняя граница. Для проверки гипотезы об отсутствии автокорреляции остатков используется числовой отрезок, изображенный на рис. 2.

Рис.2. Числовой отрезок.

Выводы осуществляются по следующей схеме.

  1. Если DW
  2. Если DW>4-d l , то это свидетельствует об отрицательной автокорреляции остатков.
  3. При d u
  4. Если d l

Не обращаясь к таблице критических точек Дарбина-Уотсона, можно пользоваться «грубым» правилом и считать, что автокорреляция остатков отсутствует, если 1,5

При наличии автокорреляции остатков полученное уравнение регрессии обычно считается неудовлетворительным.

Пример. Анализируется объем S сбережений домохозяйства за 10 лет. Предполагается, что его размер St в текущем году t зависит от величины y t -\ располагаемого дохода Y в предыдущем году и от величины Zt реальной процентной ставки Z в рассматриваемом году. Статистические данные представлены в таблице:

Необходимо:

а) по МНК оценить коэффициенты линейной регрессии S =β 0 +β 1 Y+β 2 Z;

б) оценить статистическую значимость найденных эмпирических коэффициентов регрессии b 0 , b 1 , b 2 ;

в) построить 95% -е доверительные интервалы для найденных коэффициентов;

г) вычислить коэффициент детерминации R 2 и оценить его статистическую значимость при α = 0,05;

д) определить, какой процент разброса зависимой переменной объясняется данной регрессией (значимость R 2 по Фишеру);

е) вычислить статистику DW Дарбина-У отсона и оценить наличие автокорреляции;

ж) сделать выводы по качеству построенной модели;

з) спрогнозировать средний объем сбережений в 1991 году, если предполагаемый доход составит 270 тыс. у.е., а процентная ставка будет равна 5,5.

Расчет коэффициентов проводится по формулам: b 0 = 5,9619423; b 1 = 0,126189; b 2 = 3,24841/

Проанализируем статистическую значимость коэффициентов регрессии, предварительно рассчитав их стандартные ошибки. Стандартная ошибка регрессии S=1,7407. Следовательно, дисперсии и стандартные ошибки коэффициентов равны:

S b 0 = 1,8929; S b 1 = 0,0212; S b 2 = 1,0146.

Рассчитаем соответствующие t-статистики: t b 0 = 1,565; t b 1 = 5,858; t b 2 = 3,503.

На первый взгляд (используя «грубое» правило), только статистическая значимость свободного члена вызывает сомнения. Два других коэффициента имеют t-статистики, превышающие тройку, что является признаком их высокой статистической значимости. Однако убедимся в таком выводе на основе более детального анализа.

Для использования таблиц критических точек необходимо выбрать требуемый уровень значимости. Обычно это прерогатива исследователя.

Вопросы для повторения

1. Какая существует связь между линейным коэффициентом корреляции и коэффициентом регрессии?

2. Каким образом оценить точность полученной модели регрессии?

3. Какими критериями пользуются при оценке качества построенной регрессионной модели?

4. Как строятся доверительные интервалы для регрессионной модели?

5. Может ли регрессия нелинейная по параметрам быть приведена к линейному виду?

6. Как осуществляется прогноз показателей по регрессионной модели?

Рассматриваем уравнение регрессии вида:

где k - число независимых переменных модели регрессии.

Для каждого момента времени t = 1: n значение определяется по формуле

Изучая последовательность остатков как временной ряд в , можно построить график их зависимости от времени. В соответствии с предпосылками метода наименьших квадратов остатки должны быть случайными (а). Однако при моделировании временных рядов иногда встречается ситуация, когда остатки содержат тенденцию (б и в) или циклические колебания (г). Это говорит о том, что каждое следующее значение остатков зависит от предыдущих. В этом случае имеется автокорреляция остатков.

Причины автокорреляции остатков

Автокорреляция остатков может возникать по несколькими причинами:

Во-первых, иногда автокорреляция связана с исходными данными и вызвана наличием ошибок измерения в значениях Y.

Во-вторых, иногда причину следует искать в формулировке модели. В модель может быть не включен фактор, оказывающий существенное воздействие на результат, но влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными . Зачастую этим фактором является фактор времени t.

Иногда, в качестве существенных факторов могут выступать лаговые значения переменных , включенных в модель. Либо в модели не учтено несколько второстепенных факторов, совместное влияние которых на результат существенно ввиду совпадения тенденций их изменения или циклических колебаний.

Методы определения автокорреляции остатков

Первый метод - это построение графика зависимостей остатков от времени и визуальное определение наличия автокорреляции остатков.

Второй метод — расчет критерия Дарбина — Уотсона

Т.е. Критерий Дарбина — Уотсона определяется как отношение суммы квадратов разностей последовательных значений остатков к сумме квадратов остатков. Практически во всех задачах по эконометрике значение критерия Дарбина - Уотсона указывается наряду с коэффициентом корреляции, значениями критериев Фишера и Стьюдента

Коэффициент автокорреляции первого порядка определяется по формуле

Соотношение между критерием Дарбина - Уотсона и коэффициентом автокорреляции остатков (r1) первого порядка определяется зависимостью

Т.е. если в остатках существует полная положительная автокорреляция r1 = 1, а d = 0, Если в остатках полная отрицательная автокорреляция, то r1 = - 1, d = 4. Если автокорреляция остатков отсутствует, то r1 = 0, d = 2. Следовательно,

Алгоритм выявления автокорреляции остатков по критерию Дарбина - Уотсона

Выдвигается гипотеза об отсутствии автокорреляции остатков . Альтернативные гипотеэы о наличии положительной или отрицательной автокорреляции в остатках. Затем по таблицам определяются критические значения критерия Дарбина - Уотсона dL и du для заданного числа наблюдений и числа независимых переменных модели при уровня значимости а (обычно 0,95). По этим значениям промежуток разбивают на пять отрезков.

Если расчетное значение критерия Дарбина — Уотсона попадает в зону неопределенности , то подтверждается существование автокорреляции остатков и гипотезу отклоняют

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е. и, в частности, между соседними отклонениями .

Автокорреляция (последовательная корреляция ) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных.

Возможны следующие случаи :

Эти случаи могут свидетельствовать о возможности улучшить уравнение путём оценивания новой нелинейной формулы или включения новой объясняющей переменной.

В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция.

Если же характер отклонений случаен , то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине – различны.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.

2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .

От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.

Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты.

Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции.

Наиболее известный критерий обнаружения автокорреляции первого порядка – критерий Дарбина-Уотсона . Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.



Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле:

.

Статистика DW изменяется от 0 до 4. DW =0 соответствует положительной автокорреляции, при отрицательной автокорреляции DW =4 . Когда автокорреляция отсутствует , коэффициент автокорреляции равен нулю, и статистика DW = 2 .

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий.

Выдвигается гипотеза об отсутствии автокорреляции остатков . Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона (- нижняя граница признания положительной автокорреляции) и (-верхняя граница признания отсутствия положительной автокорреляции) для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

– положительная автокорреляция, принимается ;

– зона неопределенности;

– автокорреляция отсутствует;

– зона неопределенности;

– отрицательная автокорреляция, принимается .



Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой: .

Значения r изменяются от –1 (в случае отрицательной автокорреляции) до +1 (в случае положительной автокорреляции). Близость r к нулю свидетельствует об отсутствии автокорреляции.

При отсутствии таблиц критических значений DW можно использовать следующее «грубое» правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми.

Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних).

Существует несколько ограничений на применение критерия Дарбина-Уотсона.

1. Критерий DW применяется лишь для тех моделей, которые содержат свободный член.

2. Предполагается, что случайные отклонения определяются по итерационной схеме

,

3. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).

4. Критерий Дарбина – Уотсона не применим к авторегрессионным моделям, которые содержат в числе факторов также зависимую переменную с временным лагом (запаздыванием) в один период.

,

где – оценка коэффициента автокорреляции первого порядка, D(c) – выборочная дисперсия коэффициента при лаговой переменной y t -1 , n – число наблюдений.

Обычно значение рассчитывается по формуле , а D(c) равна квадрату стандартной ошибки S c оценки коэффициента с .

В случае наличия автокорреляции остатков полученная формула регрессии обычно считается неудовлетворительной. Автокорреляция ошибок первого порядка говорит о неверной спецификации модели. Поэтому следует попытаться скорректировать саму модель. Посмотрев на график ошибок, можно поискать другую (нелинейную) формулу зависимости, включить неучтённые до этого факторы, уточнить период проведения расчётов или разбить его на части.

Если все эти способы не помогают и автокорреляция вызвана какими–то внутренними свойствами ряда {e i }, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR(1 ). (Авторегрессией это преобазование называется потому, что значение ошибки определяется значением той же самой величины, но с запаздыванием.Т.к. максимальное запаздывание равно 1, то это авторегрессияпервого порядка).

Формула AR(1 ) имеет вид: . .

Где -коэффициент автокорреляции первого порядка ошибок регрессии.

Рассмотрим AR(1) на примере парной регрессии:

.

Тогда соседним наблюдениям соответствует формула:

(1),

(2).

Умножим (2) на и вычтем из (1):

Сделаем замены переменных

получим с учетом :

(6) .

Поскольку случайные отклонения удовлетворяют предпосылкам МНК, оценки а * и b будут обладать свойствами наилучших линейных несмещенных оценок. По преобразованным значениям всех переменных с помощью обычного МНК вычисляются оценки параметров а* и b , которые затем можно использовать в регрессии.

Т.о. если остатки по исходному уравнению регрессии автокоррелированы, то для оценки параметров уравнения используют следующие преобразования:

1) Преобразовать исходные переменные у и х к виду (3), (4).

2) Обычным МНК для уравнения (6) определить оценки а * и b.

4) Записать исходное уравнение (1) с параметрами а и b (где а - из п.3, а b берётся непосредственно из уравнения (6)).

Для преобразования AR(1) важно оценить коэффициент автокорреляции ρ . Это делается несколькими способами. Самое простое – оценить ρ на основе статистики DW :

,

где r берется в качестве оценки ρ . Этот метод хорошо работает при большом числе наблюдений.

В случае, когда есть основания считать, что положительная автокорреляция отклонений очень велика (), можно использовать метод первых разностей (метод исключения тенденции) , уравнение принимает вид

.

Из уравнения по МНК оценивается коэффициент b . Параметр а здесь не определяется непосредственно, однако из МНК известно, что .

В случае полной отрицательной автокорреляции отклонений ()

Получаем уравнение регрессии:

или .

Вычисляются средние за 2 периода, а затем по ним рассчитывают а и b . Данная модель называется моделью регрессии по скользящим средним .

Критерий Дарбина-Уотсона (или статистика DW).

Это наиболее известный критерий обнаружения автокорреляции первого порядка. Статистика Дарбина - Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.

Сначала по построенному эмпирическому уравнению регрессии

определяются значения отклонений Рассчитывается

статистика

0 положительная автокорреляция;

d t зона неопределенности;

d u - d u - автокорреляция отсутствует;

  • 4 - d u
  • 4 - d/ отрицательная автокорреляция.

Можно показать, что статистика (2.64) тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой:

Отсюда вытекает смысл статистического анализа автокорреляции. Поскольку значения г изменяются от -1 до + 1, DW изменяется от 0 до 4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW равна 2. Статистика DW, равная 0, соответствует положительной автокорреляции, когда выражение в скобках равно нулю (г= +1). При отрицательной автокорреляции (г= - 1), DW= 4 и выражение в скобках равно двум.

Ограничения критерия Дарбина - Уотсона следующие.

  • 1. Статистика DW применяется лишь для тех моделей, которые содержат свободный член.
  • 2. Предполагается, что случайные отклонения определяются по итерационной схеме
  • 3. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).
  • 4. Критерий Дарбина - Уотсона неприменим к авторегрессионным моделям вида

Для моделей (2.66) предлагается /г-статистика Дарбина:

где р - оценка р первого порядка (2.65);

D(c) - выборочная дисперсия коэффициента при лаговой переменной у, _ ь п - число наблюдений.

При большом п и справедливости нуль-гипотезы Н 0: р = 0 И- статистика имеет стандартное распределение h ~ N{ 0, 1). Поэтому при заданном уровне значимости определяется критическая точка из условия:

и Л-статистика сравнивается с иар.. Если И > иа/ 2 , то нуль-гипотеза об отсутствии автокорреляции должна быть отклонена. В противном случае она не отклоняется.

Обычно значение р рассчитывается в первом приближении по формуле р&1- DIV /2, a D(c) равна квадрату стандартной ошибки т с оценки коэффициента с. Следует отметить, что вычисление /г-статистики невозможно при nD(c) > 1.

Автокорреляция чаще всего вызывается неправильной спецификацией модели. Поэтому следует попытаться скорректировать саму модель, в частности ввести какой-нибудь неучтенный фактор или изменить форму модели, например, с линейной на полулогарифмическую или гиперболическую. Если все эти способы не помогают и автокорреляция вызвана какими-то внутренними свойствами ряда {е,}, можно воспользоваться преобразованием, которое называется авторегрессионной схемой первого порядка AR{ 1).

Рассмотрим /Щ1) на примере парной регрессии:

Тогда соседним наблюдениям согласно (2.68) соответствуют формулы:

Если случайные отклонения определяются выражением (2.65), где коэффициент р известен, то преобразования формул (2.69) и (2.70) дает:

Сделаем в (2.71) замены переменных: получим с учетом выражения (2.65):

Поскольку случайные отклонения у, удовлетворяют предпосылкам МНК, оценки а и b уравнения (2.73) будут обладать свойствами наилучших линейных несмещенных оценок. По преобразованным значениям всех переменных с помощью обычного МНК вычисляются оценки параметров а и Ь, которые затем можно использовать в регрессии (2.68).

Однако способ вычисления преобразованных переменных (2.72) приводит к потере первого наблюдения, если нет информации о предшествующих наблюдениях. Это уменьшает на единицу число степеней свободы, что при больших выборках не очень существенно, однако при малых выборках приводит к потере эффективности. Тогда первое наблюдение восстанавливается с помощью поправки Прайса- Уинстена:


Для преобразования /Щ1), а также при введении поправок (2.74) важно оценить коэффициент авторегрессии р. Это делается несколькими способами. Самое простое - оценить р на основе статистики

где г берется в качестве оценки р.

Формула (2.75) хорошо работает при большом числе наблюдений.

Существуют и другие методы оценивания р: метод Кокрена- Оркатта и метод Хилдрета-Лу. Рассмотрим метод Кокрена-Оркатта пошагово:

  • 1. Сначала к непреобразованным исходным данным применяется обычный МНК, для которого рассчитываются остатки.
  • 2. Затем в качестве приближенного значения коэффициента авторегрессии р берется его МНК-оценка в регрессии (2.65).
  • 3. Проводится преобразование исходных переменных по формулам (2.72), и к преобразованным данным применяется МНК для определения новых оценок параметров а и Ь.
  • 4. Процедура повторяется, начиная с п. 2.

Процесс обычно заканчивается, когда очередное приближение р мало отличается от предыдущего. Иногда просто фиксируется количество итераций. Такая процедура реализована в большинстве эконометрических компьютерных программ.

где Ду, = у, - у 1, Дх, = х, - х,_ 1 - так называемые первые разности (назад).

Из уравнения (2.76) по МНК оценивается коэффициент Ь. Параметр а здесь не определяется непосредственно, однако из МНК известно, что а = у -Ьх.

В случае р = -1, сложив (2.69) и (2.70) с учетом (2.65), получаем уравнение регрессии.



Понравилась статья? Поделиться с друзьями: