Как составлять решать хим уравнение. Как расставлять коэффициенты в химических уравнениях

Имеет валентность равную двум, но в некоторых соединениях может проявлять высшую валентность. Если будет написана неправильно, то может не уравняться.

После правильного написания получившихся формул расставляем коэффициенты. Они для уравнения элементов. Суть уравнивания заключается в том, чтобы число элементов до реакции равнялось числу элементов после реакции. Начинать уравнивание стоит всегда с . Расставляем коэффициенты согласно индексам в формулах. Если с одной стороны реакции имеет индекс два, а с другой не имеет (принимает значение единицы), то во втором случае перед формулой ставим двойку.

Как только перед веществом поставлен коэффициент, значения всех элементов в этом увеличиваются в значение коэффициента. Если элемент обладает индексом, то сумма получившихся будет равняться произведению индекса и коэффициента.

После уравнивания металлов переходим к неметаллам. Затем переходим к кислотным остаткам и гидроксильным группам. Далее уравниваем водород. В самом конце проверяем реакцию по уравненному кислороду.

Химические реакции – это взаимодействие веществ, сопровождаемое изменением их состава. Иными словами, вещества, вступающие в , не соответствуют веществам, получающимся в результате реакции. С подобными взаимодействиями человек сталкивается ежечасно, ежеминутно. Ведь процессы, протекающие в его организме (дыхание, синтез белков, пищеварение и т.д.) – это тоже химические реакции.

Инструкция

Итак, запишите в левой части реакции исходные вещества: СН4 + О2.

В правой, соответственно, будут продукты реакции: СО2 + Н2О.

Предварительная запись этой химической реакции будет следующей: СН4 + О2 = СО2 + Н2О.

Уравняйте вышенаписанную реакцию, то есть добейтесь выполнения основного правила: количество атомов каждого элемента в левой и правой частях химической реакции должно быть одинаковым.

Вы видите, что количество атомов углерода совпадает, а количество атомов кислорода и водорода разное. В левой части 4 атома водорода, а в правой - только 2. Поэтому поставьте перед формулой воды коэффициент 2. Получите: СН4 + О2 = СО2 + 2Н2О.

Атомы углерода и водорода уравнены, теперь осталось сделать то же самое с кислородом. В левой части атомов кислорода 2, а в правой – 4. Поставив перед молекулой кислорода коэффициент 2, получите итоговую запись реакции окисления метана: СН4 + 2О2 = СО2 + 2Н2О.

Как неудивительна природа для человека: зимой она окутывает землю снежным пуховым одеялом, весной - раскрывает, словно хлопья поп корна, все живое, летом - бушует буйством красок, осенью поджигает рыжим огнем растения... И только если вдуматься и присмотреться, можно увидеть, что стоят за всеми этими столь привычными изменениями сложные физические процессы и ХИМИЧЕСКИЕ РЕАКЦИИ. А чтобы исследовать все живое, необходимо уметь решать химические уравнения. Основным требованием при уравнивании химических уравнений - знание закона сохранения количества вещества: 1)количество вещества до реакции равно количеству вещества после реакции; 2)общее количество вещества до реакции равно общему количеству вещества после реакции.

Инструкция

Чтобы уравнять "пример" необходимо выполнить несколько шагов.
Записать уравнение реакции в общем виде. Для этого неизвестные коэффициенты перед обозначить буквами латинского (х, y, z, t и тд). Пусть требуется уравнять реакцию соединения водорода и , в результате которой получится вода. Перед молекулами водорода, кислорода и воды поставить латинские

Запись химического взаимодействия, отражающая количественную и качественную информацию о реакции, называют уравнением химических реакций. Записывается реакция химическими и математическими символами.

Основные правила

Химические реакции предполагают превращение одних веществ (реагентов) в другие (продукты реакции). Это происходит благодаря взаимодействию внешних электронных оболочек веществ. В результате из начальных соединений образуются новые.

Чтобы выразить ход химической реакции графически, используются определённые правила составления и написания химических уравнений.

В левой части пишутся изначальные вещества, которые взаимодействуют между собой, т.е. суммируются. При разложении одного вещества записывается его формула. В правой части записываются полученные в ходе химической реакции вещества. Примеры записанных уравнений с условными обозначениями:

  • CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 ;
  • CaCO 3 = CaO + CO 2 ;
  • 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 ;
  • CH 3 COONa + H 2 SO 4 (конц.) → CH 3 COOH + NaHSO 4 ;
  • 2NaOH + Si + H 2 O → Na 2 SiO 3 + H 2 .

Коэффициенты перед химическими формулами показывают количество молекул вещества. Единица не ставится, но подразумевается. Например, уравнение Ba + 2H 2 O → Ba(OH) 2 + H 2 показывает, что из одной молекулы бария и двух молекул воды получается по одной молекуле гидроксида бария и водорода. Если пересчитать количество водорода, то и справа, и слева получится четыре атома.

Обозначения

Для составления уравнений химических реакций необходимо знать определённые обозначения, показывающие, как протекает реакция. В химических уравнениях используются следующие знаки:

  • → - необратимая, прямая реакция (идёт в одну сторону);
  • ⇄ или ↔ - реакция обратима (протекает в обе стороны);
  • - выделяется газ;
  • ↓ - выпадает осадок;
  • hν - освещение;
  • t° - температура (может указываться количество градусов);
  • Q - тепло;
  • Е(тв.) - твёрдое вещество;
  • Е(газ) или Е(г) - газообразное вещество;
  • Е(конц.) - концентрированное вещество;
  • Е(водн.) - водный раствор вещества.

Рис. 1. Выпадение осадка.

Вместо стрелки (→) может ставиться знак равенства (=), показывающий соблюдение закона сохранения вещества: и слева, и справа количество атомов веществ одинаково. При решении уравнений сначала ставится стрелка. После расчёта коэффициентов и уравнения правой и левой части под стрелкой подводят черту.

Условия реакции (температура, освещение) указываются сверху знака протекания реакции (→,⇄). Также сверху подписываются формулы катализаторов.

Рис. 2. Примеры условий реакции.

Какие бывают уравнения

Химические уравнения классифицируются по разным признакам. Основные способы классификации представлены в таблице.

Признак

Реакции

Описание

Пример

По изменению количества реагентов и конечных веществ

Замещения

Из простого и сложного вещества образуются новые простые и сложные вещества

2Na +2H 2 O → 2NaOH + H 2

Соединения

Несколько веществ образуют новое вещество

С + О 2 = СО 2

Разложения

Из одного вещества образуется несколько веществ

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

Ионного обмена

Обмен составными частями (ионами)

Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + CO 2 + H 2 O

По выделению тепла

Экзотермические

Выделение тепла

С + 2H 2 = СH 4 + Q

Эндотермические

Поглощение тепла

N 2 + O 2 → 2NO – Q

По типу энергетического воздействия

Электрохимические

Действие электрического тока

Фотохимические

Действие света

Термохимические

Действие высокой температуры

По агрегатному состоянию

Гомогенные

Одинаковое состояние

CuCl 2 + Na 2 S → 2NaCl + CuS↓

Гетерогенные

Разное состояние

4Н 2 О (ж) + 3Fe (т) → Fe 3 O 4 + 4H 2

Существует понятие химического равновесия, присущее только обратимым реакциям. Это состояние, при котором скорости прямой и обратной реакции, а также концентрации веществ равны. Такое состояние характеризуется константой химического равновесия.

При внешнем воздействии температуры, давления, света реакция может смещаться в сторону уменьшения или увеличения концентрации определённого вещества. Зависимость константы равновесия от температуры выражается с помощью уравнений изобары и изохоры. Уравнение изотермы отражает зависимость энергии и константы равновесия. Эти уравнения показывают направление протекания реакции.

В уроке 13 «» из курса «Химия для чайников » рассмотрим для чего нужны химические уравнения; научимся уравнивать химические реакции, путем правильной расстановки коэффициентов. Данный урок потребует от вас знания химических основ из прошлых уроков. Обязательно прочитайте об элементном анализе, где подробно рассмотрены эмпирические формулы и анализ химических веществ.

В результате реакции горения метана CH 4 в кислороде O 2 образуются диоксид углерода CO 2 и вода H 2 O. Эта реакция может быть описана химическим уравнением :

  • CH 4 + O 2 → CO 2 + H 2 O (1)

Попробуем извлечь из химического уравнения больше сведений, чем просто указание продуктов и реагентов реакции. Химичекое уравнение (1) является НЕполным и потому не дает никаких сведений о том, сколько молекул O 2 расходуется в расчете на 1 молекулу CH 4 и сколько молекул CO 2 и H2 O получается в результате. Но если записать перед соответствующими молекулярными формулами численные коэффициенты, которые укажут сколько молекул каждого сорта принимает участие в реакции, то мы получим полное химическое уравнение реакции.

Для того, чтобы завершить составление химического уравнения (1), нужно помнить одно простое правило: в левой и правой частях уравнения должно присутствовать одинаковое число атомов каждого сорта, поскольку в ходе химической реакции не возникает новых атомов и не происходит уничтожение имевшихся. Данное правило основывается на законе сохранения массы, который мы рассмотрели в начале главы.

Нужно для того, чтобы из простого химического уравнения получить полное. Итак, перейдем к непосредственному уравниванию реакции (1): еще раз взгляните на химическое уравнение, в точности на атомы и молекулы в правой и левой части. Нетрудно заметить, что в реакции участвуют атомы трех сортов: углерод C, водород H и кислород O. Давайте подсчитаем и сравним количество атомов каждого сорта в правой и левой части химического уравнения.

Начнем с углерода. В левой части один атом С входит в состав молекулы CH 4 , а в правой части один атом С входит в состав CO 2 . Таким образом в левой и в правой части количество атомов углерода совпадает, поэтому его мы оставляем в покое. Но для наглядности поставим коэффициент 1 перед молекулами с углеродом, хоть это и не обязательно:

  • 1CH 4 + O 2 → 1CO 2 + H 2 O (2)

Затем переходим к подсчету атомов водорода H. В левой части присутствуют 4 атома H (в количественном смысле H 4 = 4H) в составе молекулы CH 4 , а в правой – всего 2 атома H в составе молекулы H 2 O, что в два раза меньше чем в левой части химического уравнения (2). Будем уравнивать! Для этого поставим коэффициент 2 перед молекулой H 2 O. Вот теперь у нас и в реагентах и в продуктах будет по 4 молекулы водорода H:

  • 1CH 4 + O 2 → 1CO 2 + 2H 2 O (3)

Обратите свое внимание, что коэффициент 2, который мы записали перед молекулой воды H 2 O для уравнивания водорода H, увеличивает в 2 раза все атомы, входящие в ее состав, т.е 2H 2 O означает 4H и 2O. Ладно, с этим вроде бы разобрались, осталось подсчитать и сравнить количество атомов кислорода O в химическом уравнении (3). Сразу бросается в глаза, что в левой части атомов O ровно в 2 раза меньше чем в правой. Теперь-то вы уже и сами умеете уравнивать химические уравнения, поэтому сразу запишу финальный результат:

  • 1CH 4 + 2O 2 → 1CO 2 + 2H 2 O или СH 4 + 2O 2 → CO 2 + 2H 2 O (4)

Как видите, уравнивание химических реакций не такая уж и мудреная штука, и важна здесь не химия, а математика. Уравнение (4) называется полным уравнением химической реакции, потому что в нем соблюдается закон сохранения массы, т.е. число атомов каждого сорта, вступающих в реакцию, точно совпадает с числом атомов данного сорта по завершении реакции. В каждой части этого полного химического уравнения содержится по 1 атому углерода, по 4 атома водорода и по 4 атома кислорода. Однако стоит понимать пару важных моментов: химическая реакция — это сложная последовательность отдельных промежуточных стадий, и потому нельзя к примеру истолковывать уравнение (4) в том смысле, что 1 молекула метана должна одновременно столкнуться с 2 молекулами кислорода. Процессы происходящие при образовании продуктов реакции гораздо сложнее. Второй момент: полное уравнение реакции ничего не говорит нам о ее молекулярном механизме, т.е о последовательности событий, которые происходят на молекулярном уровне при ее протекании.

Коэффициенты в уравнениях химических реакций

Еще один наглядный пример того, как правильно расставить коэффициенты в уравнениях химических реакций: Тринитротолуол (ТНТ) C 7 H 5 N 3 O 6 энергично соединяется с кислородом, образуя H 2 O, CO 2 и N 2 . Запишем уравнение реакции, которое будем уравнивать:

  • C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (5)

Проще составлять полное уравнение, исходя из двух молекул ТНТ, так как в левой части содержится нечетное число атомов водорода и азота, а в правой — четное:

  • 2C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (6)

Тогда ясно, что 14 атомов углерода, 10 атомов водорода и 6 атомов азота должны превратиться в 14 молекул диоксида углерода, 5 молекул воды и 3 молекулы азота:

  • 2C 7 H 5 N 3 O 6 + O 2 → 14CO 2 + 5H 2 O + 3N 2 (7)

Теперь в обеих частях содержится одинаковое число всех атомов, кроме кислорода. Из 33 атомов кислорода, имеющихся в правой части уравнения, 12 поставляются двумя исходными молекулами ТНТ, а остальные 21 должны быть поставлены 10,5 молекулами O 2 . Таким образом полное химическое уравнение будет иметь вид:

  • 2C 7 H 5 N 3 O 6 + 10,5O 2 → 14CO 2 + 5H 2 O + 3N 2 (8)

Можно умножить обе части на 2 и избавиться от нецелочисленного коэффициента 10,5:

  • 4C 7 H 5 N 3 O 6 + 21O 2 → 28CO 2 + 10H 2 O + 6N 2 (9)

Но этого можно и не делать, поскольку все коэффициенты уравнения не обязательно должны быть целочисленными. Правильнее даже составить уравнение, исходя из одной молекулы ТНТ:

  • C 7 H 5 N 3 O 6 + 5,25O 2 → 7CO 2 + 2,5H 2 O + 1,5N 2 (10)

Полное химическое уравнение (9) несет в себе много информации. Прежде всего оно указывает исходные вещества — реагенты , а также продукты реакции. Кроме того, оно показывает, что в ходе реакции индивидуально сохраняются все атомы каждого сорта. Если умножить обе части уравнения (9) на число Авогадро N A =6,022·10 23 , мы сможем утверждать, что 4 моля ТНТ реагируют с 21 молями O 2 с образованием 28 молей CO 2 , 10 молей H 2 O и 6 молей N 2 .

Есть еще одна фишка. При помощи таблицы Менделеева определяем молекулярные массы всех этих веществ:

  • C 7 H 5 N 3 O 6 = 227,13 г/моль
  • O2 = 31,999 г/моль
  • CO2 = 44,010 г/моль
  • H2 O = 18,015 г/моль
  • N2 = 28,013 г/моль

Теперь уравнение 9 укажет еще, что 4·227,13 г = 908,52 г ТНТ требуют для осуществления полной реакции 21·31,999 г = 671,98 г кислорода и в результате образуется 28·44,010 г = 1232,3 г CO 2 , 10·18,015 г = 180,15 г H 2 O и 6·28,013 г = 168,08 г N 2 . Проверим, выполняется ли в этой реакции закон сохранения массы:

Реагенты Продукты
908,52 г ТНТ 1232,3 г CO2
671,98 г CO2 180,15 г H2 O
168,08 г N2
Итого 1580,5 г 1580,5 г

Но необязательно в химической реакции должны участвовать индивидуальные молекулы. Например, реакция известняка CaCO3 и соляной кислоты HCl, с образованием водного раствора хлорида кальция CaCl2 и диоксида углерода CO2 :

  • CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O (11)

Химическое уравнение (11) описывает реакцию карбоната кальция CaCO 3 (известняка) и хлористоводородной кислоты HCl с образованием водного раствора хлорида кальция CaCl 2 и диоксида углерода CO 2 . Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково.

Смысл этого уравнения на макроскопическом (молярном) уровне таков: 1 моль или 100,09 г CaCO 3 требует для осуществления полной реакции 2 моля или 72,92 г HCl, в результате чего получается по 1 молю CaCl 2 (110,99 г/моль), CO 2 (44,01 г/моль) и H 2 O (18,02 г/моль). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы.

Интерпретация уравнения (11) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение, а потому нельзя понимать химическое уравнение (11) в том смысле, что 1 молекула карбоната кальция CaCO 3 реагирует с 2 молекулами HCl. Тем более молекула HCl в растворе вообще диссоциирует (распадается) на ионы H + и Cl — . Таким образом более правильным описанием того, что происходит в этой реакции на молекулярном уровне, дает уравнение:

  • CaCO 3 (тв.) + 2H + (водн.) → Ca 2+ (водн.) + CO 2 (г.) + H 2 O(ж.) (12)

Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв. — твердое, водн. — гидратированный ион в водном растворе, г. — газ, ж. — жидкость).

Уравнение (12) показывает, что твердый CaCO 3 реагирует с двумя гидратированными ионами H + , образуя при этом положительный ион Ca 2+ , CO 2 и H 2 O. Уравнение (12) как и другие полные химические уравнения не дает представления о молекулярном механизме реакции и менее удобно для подсчета количества веществ, однако, оно дает лучшее описание происходящего на микроскопическом уровне.

Закрепите полученные знания о составлении химических уравнений, самостоятельно разобрав пример с решением:

Надеюсь из урока 13 «Составление химических уравнений » вы узнали для себя что-то новое. Если у вас возникли вопросы, пишите их в комментарии.

Решение уравнений химический реакций вызывают затруднения у немалого количества учеников средней школы во-многом благодаря большому разнообразию участвующих в них элементов и неоднозначности их взаимодействия. Но так как основная часть курса общей химии в школе рассматривает именно взаимодействие веществ на основе их уравнений реакций, то ученикам необходимо обязательно ликвидировать пробелы в данной области и научиться решать химические уравнения, чтобы избежать проблем с предметом в дальнейшем.

Уравнением химической реакции называется символьная запись, отображающая взаимодействующие химические элементы, их количественное соотношение и получающиеся в результате взаимодействия вещества. Данные уравнения отражают сущность взаимодействия веществ с точки зрения атомно-молекулярного или электронного взаимодействия.

  1. В самом начале школьного курса химии учат решать уравнения на основе понятия валентности элементов периодической таблицы. На основе данного упрощения рассмотрим решение химического уравнения на примере окисления алюминия кислородом. Алюминий, взаимодействуя с кислородом, образует оксид алюминия. Обладая указанными исходными данными составим схему уравнения.

    Al + O 2 → AlO


    В данном случае мы записали примерную схему химической реакции, которая лишь частично отражает ее сущность. В левой части схемы записываются вещества, вступающую в реакцию, а в правой результат их взаимодействия. Кроме того, кислород и другие типичные окислители, обычно записываются правее металлов и других восстановителей в обоих частях уравнения. Стрелка показывает направление реакции.

  2. Чтобы данная составленная схема реакции приобрела законченный вид и соответствовала закону сохранения массы веществ, необходимо:
    • Проставить индексы в правой части уравнения у вещества, получившегося в результате взаимодействия.
    • Уровнять количество участвующих в реакции элементов с количеством получившегося вещества в соответствии с законом сохранения массы веществ.
  3. Начнем с приостановки индексов в химической формуле готового вещества. Индексы устанавливаются в соответствии с валентностью химических элементов. Валентностью называют способность атомов образовывать соединения с другими атомами за счет соединения их неспаренных электронов, когда одни атомы отдают свои электроны, а другие присоединяют их себе на внешний энергетический уровень. Принято считать, что валентность химического элемента определяет его группой (колонкой) в периодической таблице Менделеева. Однако на практике взаимодействие химических элементов происходит гораздо сложнее и разнообразнее. Например, атом кислорода во всех реакциях имеет валентность Ⅱ, несмотря на то, что в периодической таблице находится в шестой группе.
  4. Чтобы помочь вам сориентироваться в этом многообразии, предлагаем вам следующий небольшой справочный помощник, который поможет определить валентность химического элемента. Выберите интересующий вас элемент и вы увидите возможные значения его валентности. В скобках указаны редкие для выбранного элемента валентности.
  5. Вернемся к нашему примеру. Запишем в правой части схемы реакции сверху над каждым элементом его валентность.

    Для алюминия Al валентность будет равна Ⅲ, а для молекулы кислорода O 2 валентность равна Ⅱ. Находим наименьшее общее кратное к этим числам. Оно будет равно шести. Делим наименьшее общее кратное на валентность каждого элемента и получаем индексы. Для алюминия шесть делим на валентность получаем индекс 2, для кислорода 6/2=3. Химическая формула оксида алюминия, полученного в результате реакции, примет вид Al 2 O 3 .

    Al + O 2 → Al 2 O 3

  6. После получения правильной формулы готового вещества необходимо проверить и в большинстве случаев уравнять правые и левые части схемы согласно закона сохранения массы, так как продукты реакции образуются из тех же атомов, которые изначально входили в состав исходных веществ, участвующих в реакции.
  7. Закон сохранения массы гласит, что количество атомов вступивших в реакцию должно равняться количеству атомов получившихся в результате взаимодействия. В нашей схеме во взаимодействии участвуют один атом алюминия и два атома кислорода. В результате реакции получаем два атома алюминия и три кислорода. Очевидно, что схему необходимо уровнять, используя коэффициенты для элементов и вещества, чтобы соблюдался закон сохранения массы.
  8. Уравнивание выполняют также через нахождение наименьшего общего кратного, которое находится между элементами, обладающими наибольшими индексами. В нашем примере это будет кислород с индексом в правой части равным 3 и в левой части равным 2. Наименьшее общее кратное и в этом случае будет равно 6. Теперь разделим наименьшее общее кратное на значение наибольшего индекса в левой и правой частях уравнения и получим следующие индексы для кислорода.

    Al + 3∙O 2 → 2∙Al 2 O 3

  9. Теперь остается уравнять только алюминий в правой части. Для этого в левую часть поставим коэффициент 4.

    4∙Al + 3∙O 2 = 2∙Al 2 O 3

  10. После расстановки коэффициентов уравнение химической реакции соответствует закону сохранения массы и между его левой и правой частями можно поставить знак равенства. Расставленные коэффициенты в уравнении обозначают число молекул веществ, участвующих в реакции и получающихся в результате нее, или соотношение данных веществ в молях.
После выработки навыков решения химических уравнений на основе валентностей взаимодействующих элементов, школьный курс химии знакомит с понятием степени окисления и теорией окислительно-восстановительных реакций. Данный тип реакций является наиболее распространенным и в дальнейшем химические уравнения чаще всего решают на основе степеней окисления взаимодействующих веществ. О том, рассказано в соответствующей статье на нашем сайте.

Химическим уравнением можно назвать визуализацию химической реакции с помощью знаков математики и химических формул. Такое действие является отображением какой-либо реакции, в процессе которой появляются новые вещества.

Химические задания: виды

Химическое уравнение - это последовательность химических реакций. Они основываются на законе сохранения массы каких-либо веществ. Существует всего два вида реакций:

  • Соединения - к ним относятся (происходит замена атомов сложных элементов атомами простых реагентов), обмена (замещение составными частями двух сложных веществ), нейтрализации (реакция кислот с основаниями, образование соли и воды).
  • Разложения - образование двух и более сложных или простых веществ из одного сложного, но состав их более простой.

Химические реакции также можно разделить на типы: экзотермические (происходят с выделением теплоты) и эндотермические (поглощение теплоты).

Этот вопрос волнует многих учащихся. Мы предлегаем несколько простых советов, которые подскажут, как научиться решать химические уравнения:

  • Желание понять и освоить. Нельзя отступать от своей цели.
  • Теоретические знания. Без них невозможно составить даже элементарную формулу соединения.
  • Правильность записи химической задачи - даже малейшая ошибка в условии сведет к нулю все ваши усилия в ее решении.

Желательно, чтобы сам процесс решения химических уравнений был для вас увлекательным. Тогда химические уравнения (как решать их и какие моменты нужно запомнить, мы разберем в этой статье) перестанут быть для вас проблемными.

Задачи, которые решаются с использованием уравнений химических реакций

К таким задачам относятся:

  • Нахождение массы компонента по данной массе другого реагента.
  • Задания по комбинации «масса-моль».
  • Расчеты по комбинации «объем-моль».
  • Примеры с применением термина «избыток».
  • Расчеты с использованием реагентов, один из которых не лишен примесей.
  • Задачи на распад результата реакции и на производственные потери.
  • Задачи на поиск формулы.
  • Задачи, в которых реагенты предоставлены в виде растворов.
  • Задачи, содержащие смеси.

Каждый из этих видов задач включает в себя несколько подтипов, которые обычно подробно рассматриваются еще на первых школьных уроках химии.

Химические уравнения: как решать

Существует алгоритм, который помогает справиться с практически любым заданием из этой непростой науки. Чтобы понять, как правильно решать химические уравнения, нужно придерживаться определенной закономерности:

  • При записи уравнения реакции не забывать расставлять коэффициенты.
  • Определение способа, с помощью которого можно найти неизвестные данные.
  • Правильность применения в выбранной формуле пропорций или использование понятия «количество вещества».
  • Обратить внимание на единицы измерений.

В конце важно обязательно проверить задачу. В процессе решения вы могли допустить элементарную ошибку, которая повлияла на результат решения.

Основные правила составления химических уравнений

Если придерживаться правильной последовательности, то вопрос о том, что такое химические уравнения, как решать их, не будет вас волновать:

  • Формулы веществ, которые вступают в реакцию (реагенты), записываются в левой части уравнения.
  • Формулы веществ, которые образуются в результате реакции, записываются уже в правой части уравнения.

Составление уравнения реакции основывается на законе сохранения массы веществ. Следовательно, обе части уравнения должны быть равны, т. е. с одинаковым числом атомов. Достичь этого можно при условии правильной расстановки коэффициентов перед формулами веществ.

Расстановка коэффициентов в химическом уравнении

Алгоритм расстановки коэффициентов таков:

  • Подсчет в левой и правой части уравнения атомов каждого элемента.
  • Определение меняющегося количества атомов у элемента. Также нужно найти Н.О.К.
  • Получение коэффициентов достигается путем деления Н.О.К. на индексы. Обязательно проставить данные цифры перед формулами.
  • Следующим шагом является пересчет количества атомов. Иногда возникает необходимость в повторении действия.

Уравнивание частей химической реакции происходит с помощью коэффициентов. Расчет индексов производится через валентность.

Для успешного составления и решения химических уравнений необходимо учитывать физические свойства вещества, такие как объем, плотность, масса. Также нужно знать состояние реагирующей системы (концентрация, температура, давление), разбираться в единицах измерения данных величин.

Для понимания вопроса о том, что такое химические уравнения, как решать их, необходимо использование основных законов и понятий этой науки. Чтобы успешно вычислять подобные задачи, необходимо также вспомнить или освоить навыки математических операций, уметь совершать действия с числами. Надеемся, с нашими советами вам будет легче справляться с химическими уравнениями.



Понравилась статья? Поделиться с друзьями: