Классификация белков по сложности строения. Белки

По химическому составу – простые и сложные

Простые белки (протеины) – молекулы состоят только из аминокислот.

Подразделяются по растворимости в воде на группы :

  • протамины
  • гистоны
  • альбумины
  • глобулины
  • проламины
  • глютелины

Сложные белки (протеиды)

Виды сложных белков:

  • липопротеиды
  • гликопротеиды
  • фосфопротеиды
  • металлопротеиды
  • нуклеопротеиды
  • хромопротеиды

15. Сложные белки: определение, классификация по небелковому компоненту. Краткая характеристика представителей .

Сложные белки (протеиды) – помимо полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислоты (нуклеопротеиды), ионами металла (металлопротеиды), фосфатной группой (фосфопротеиды), пигментами (хромопротеиды) и т. д.

Виды сложных белков:

  • липопротеиды
  • гликопротеиды
  • фосфопротеиды
  • металлопротеиды
  • нуклеопротеиды
  • хромопротеиды
Вид сложных белков Примеры
Липопротеиды Хиломикроны, ЛПОНП (липопротеиды очень низкой плотности), ЛППП (липопротеиды промежуточной плотности), ЛПНП (липопротеиды низкой плотности), ЛПВП (липопротеиды высокой плотности) и др.
Гликопротеиды Муцины, мукоиды, церулоплазмин, орозомукоид, трансферины, протромбин, иммуноглобулины и др.
Фосфопротеиды Казеин, овальбумин, вителлин и др.
Металлопротеиды Гемэритрин, гемоцианин, ферритин, трансферрин
Нуклеопротеиды Дезоксирибонуклепротеиды (ДНП), рибонуклеопротеиды (РНП)
Хромопротеиды Цитохромы, каталаза, пероксидаза, гемоглобин, миоглобин, эритрокруорины, хлорокруорины

16.Биологические функции белков. Способность к специфическим взаимодействиям («узнавание») как основа биологических функ­­ций всех белков. Типы природных лигандов и особенности их взаимодействия с белками.

Каждый индивидуальный белок, имеющий уникальную первичную структуру и конформацию, обладает и уникальной функцией, отличающей его от остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных функций. Необходимое условие для функционирования белков - присоединение к нему другого вещества, которое называют "лиганд ". Лигандами могут быть как низкомолекулярные вещества, так и макромолекулы. Взаимодействие белка с лигандом высокоспецифично и обратимо, что определяется строением участка белка, называемого центром связывания белка с лигандом или активным центром.

Активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

Биологические функции белков:

17. Различие белкового состава органов и тканей. Изменение белкового состава при онтогенезе и болезнях.(ферменты это белковые молекулы кроч одно и тоже)

.Различия ферментного состава органов и тканей. Органоспецифические ферменты. Изменение ферментов в процессе развития.

Сравнение множества клеток самых разных типов показывает, что набор содержащихся в них ферментов во многом сходен. По-видимому, во всех живых организмах протекают в основном одни и те же метаболические процессы; некоторые различия, касающиеся конечных продуктов обмена, отражают скорее наличие или отсутствие того или иного фермента, нежели изменение общего характера метаболизма. Сложные системы углеводного обмена, состоящие из ферментов, коферментов и переносчиков, образуют главный поставляющий энергию механизм у животных, растений, плесневых грибов, дрожжей и у большинства других микроорганизмов. Однако в характере метаболизма, химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Что касается метаболизма, то особенности его в соответствующих органах или тканях, несомненно, определяются набором ферментов. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава, в первую очередь от тех ферментов, которые участвуют в процессах биосинтеза. Не исключено, что и более очевидные различия, касающиеся строения и формы тех или иных органов и тканей, также имеют энзимологическую природу: Известно, что строение и форма находятся под контролем генов; контроль осуществляется путем образования специфических белков, из которых главными для организации тканей являются ферменты я транспортные системы. Продуктами генов могут быть также белки, не обладающие каталитическими свойствами, но играющие важную роль в «встраивании» ферментных белков в соответствующие структурные ансамбли, например мембраны; однако такие молекулы можно рассматривать как компоненты катализаторов, поскольку они находятся в теснейшей взаимосвязи с ними.

Изменение активности ферментов при болезнях. Наследственные энзимопатии. Происхождение ферментов крови и значение их определения при болезнях.

В основе многих заболеваний лежат нарушения функционирования ферментов в клетке - энзимопатии . Различают первичные (наследственные) и вторичные (приобретённые) энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.

При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомнорецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать

по одному из ниже перечисленных "сценариев". Рассмотрим условную схему метаболического пути:

Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:

Нарушение образования конечных продуктов . Недостаток конечного продукта этого метаболического пути (Р) (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания:

· Клинические проявления. В качестве примера можно рассмотреть альбинизм. При альбинизме нарушен синтез в меланоцитах пигментов - меланинов. Меланин находится в коже, волосах, радужке, пигментном эпителии сетчатки глаза и влияет на их окраску. При альбинизме наблюдают слабую пигментацию кожи, светлые волосы, красноватый цвет радужки глаза из-за просвечивающих капилляров. Проявление альбинизма связано с недостаточностью фермента тирозингидроксилазы (тирозиназы) - одного из ферментов, катализирующего метаболический путь образования меланинов

Накопление субстратов-предшественников . При недостаточности фермента Е3 будут накапливаться вещество С, а также во многих случаях и предшествующие соединения. Увеличение субстратов-предшественников дефектного фермента - ведущее звено развития многих заболеваний:

· Клинические проявления. Известно заболевание алкапгонурия, при котором нарушено окисление гомогентизиновой кислоты в тканях (гомогентизиновая кислота - промежуточный метаболит катаболизма тирозина). У таких больных наблюдают недостаточность фермента окисления гомогентизиновой кислоты - диоксигеназы гомогентизиновой кислоты, приводящей к развитию заболевания. В результате увеличиваются концентрация гомогентизиновой кислоты и выведение её с мочой. В присутствии кислорода гомогентизиновая кислота превращается в соединение чёрного цвета - алкаптон. Поэтому моча таких больных на воздухе окрашивается в чёрный цвет. Алкаптон также образуется и в биологических жидкостях, оседая в тканях, коже, сухожилиях, суставах. При значительных отложениях алкаптона в суставах нарушается их подвижность.

Нарушение образования конечных продуктов и накопление субстратов предшественников . Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата вызывают клинические проявления.

· Клинические проявления. Например, у людей с болезнью Гирке (гликогеноз I типа) наблюдают снижение концентрации глюкозы в крови (гипогликемия) в перерывах между приёмами пищи. Это связано с нарушением распада гликогена в печени и выходом из неё глюкозы вследствие дефекта фермента глюкозо-6-фосфатфосфатазы. Одновременно у таких людей увеличиваются размеры печени (гепатомегалия) вследствие накопления в ней не используемого гликогена.

Особый интерес для клиники представляет исследование активности индикаторных ферментов в сыворотке крови, так как по появлению в плазме или сыворотке крови ряда тканевых ферментов в повышенных количествах можно судить о функциональном состоянии и поражении различных органов (например, печени, сердечной и скелетной мускулатуры). При остром инфаркте миокарда особенно важно исследовать активность креатинкиназы, АсАТ, ЛДГ и оксибутиратдегидрогеназы. При заболеваниях печени, в частности при вирусном гепатите (болезнь Боткина), в сыворотке крови значительно увеличиваетсяактивность АлАТ и АсАТ, сорбитолдегидрогеназы, глутаматдегидрогеназы и некоторых других ферментов. озрастание активности ферментов сыворотки крови при многих патологических процессах объясняется прежде всего двумя причинами: 1) выходом в кровяное русло ферментов из поврежденных участков органов или тканей на фоне продолжающегося ихбиосинтеза в поврежденных тканях; 2) одновременным повышением каталитической активности некоторых ферментов, переходящих вкровь. Возможно, что повышение активности ферментов при «поломке» механизмов внутриклеточной регуляции обмена веществсвязано с прекращением действия соответствующих регуляторов и ингибиторов ферментов, изменением под влиянием различных факторов строения и структуры макромолекул ферментов.

18. Ферменты, история открытия. Особенности ферментативного катализа. Специфичность действия ферментов. Классификация и номенклатура ферментов.

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришел к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках. Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастера с одной стороны, и М. Бертло и Ю. Либиха - с другой, о природе спиртового брожения. Собственно ферментами (от лат. fermentum - закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч. ἐν- - в- и ζύμη - дрожжи, закваска) предложен в 1876 году В. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин, амилаза). Через два года после смерти Л. Пастера в 1897 году Э. Бухнер опубликовал работу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В 1907 году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 году Дж. Самнером. В течение последующих 10 лет было выделено еще несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшим сплайсинг РНК у инфузории Tetrahymena thermophila.Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость превращения субстрата по сравнению с неферментативной реакцией в 10 9 -10 12 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активационный барьер. Большинство ферментов обладает высокой субстратной специфичностью, т. е. способностью катализировать превращение только одного или несколько близких по структуре веществ. Специфичность определяется топографией связывающего субстрат участка активного центра.

Активность ферментов регулируется в процессе их биосинтеза (в т.ч. благодаря образованию изоферментов, которы катализируют идентичные реакции, но отличаются строением и каталитическими свойствами), а также условиями среды (рН, температура, ионная сила раствора) и многочисленными ингибиторами и активаторами, присутствующими в организме. Ингибиторами и активаторами могут служить сами субстраты (в определенных концентрациях), продукты реакции, а также конечные продукты в цепи последовательных превращений вещества Ферментативные реакции чувствительны к внешним условиям, в частности к ионной силе раствора и рН среды. Влияние температуры на скорость ферментативной реакции описывается кривой с максимумом, восходящая ветвь которой отражает обычную для химической реакций зависимость, выраженную уравнением Аррениуса. Нисходящая ветвь связана с тепловой денатурацией фермента.

Биологическая функция фермента, как и любого белка, обусловлена наличием в его структуре активного центра. Лиганд, взаимодействующий с активным центром фермента, называют субстратом. В активном центре фермента есть аминокислотные остатки, функциональные группы которых обеспечивают связывание субстрата, и аминокислотные остатки, функциональные группы которых осуществляют химическое превращение субстрата. Условно эти группы обозначают как участок связывания субстрата и каталитический участок, однако следует помнить, что не всегда эти участки имеют чёткое пространственное разделение и иногда могут "перекрываться" . В участке связывания субстрат при помощи нековалентных связей взаимодействует (связывается) с ферментом, формируя фермент-субстратный комплекс. В каталитическом участке субстрат претерпевает химическое превращение в продукт, который затем высвобождается из активного центра фермента. Схематично процесс катализа можно представить следующим уравнением:

Е + S ↔ ES ↔ ЕР ↔ Е + Р,

где Е - фермент (энзим), S - субстрат, Р - продукт.

Специфичность - наиболее важное свойство ферментов, определяющее биологическую значимость этих молекул. Различают субстратную и каталитическую специфичности фермента, определяемые строением активного центра. Под субстратной специфичностью понимают способность каждого фермента взаимодействовать лишь с одним или несколькими определёнными субстратами. Различают:

1. абсолютную субстратную специфичность;

2. групповую субстратную специфичность;

3. стереоспецифичность.

Абсолютная субстратная специфичность . Активный центр ферментов, обладающих абсолютной субстратной специфичностью, комплементарен только одному субстрату. Следует отметить, что таких ферментов в живых организмах мало.

Групповая субстратная специфичность Большинство ферментов катализирует однотипные реакции с небольшим количеством (группой) структурно похожих субстратов.

Стереоспецифичность При наличии у субстрата нескольких стерео-изомеров фермент проявляет абсолютную специфичность к одному из них.

Каталитическая специфичность Фермент катализирует превращение присоединённого субстрата по одному из возможных путей его превращения, Это свойство обеспечивается строением каталитического участка активного центра фермента и называется каталитической специфичностью, или специфичностью пути превращения субстрата.

Скорость ферментативной реакции зависит от ряда факторов, таких как количество и активность ферментов, концентрация субстрата, температура среды, рН раствора, присутствие регуляторных молекул (активаторов и ингибиторов).

Зависимость скорости ферментативной реакции от количества ферментов . При проведении ферментативной реакции в условиях избытка субстрата скорость реакции будет зависеть от концентрации фермента. Графическая зависимость такой реакции имеет вид прямой линии Однако количество фермента часто невозможно определить в абсолютных величинах, поэтому на практике пользуются условными величинами, характеризующими активность фермента: одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов. .

В 1973 г. была принята новая

По удельной активности судят об очистке фермента: чем меньше посторонних белков, тем выше удельная активность.

Зависимость скорости ферментативной реакции от температуры среды . Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной реакции, подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы.

Зависимость скорости ферментативной реакции от рН среды Активность ферментов зависит от рН раствора, в котором протекает ферментативная реакция. Для каждого фермента существует значение рН, при котором наблюдается его максимальная активность. Отклонение от оптимального значения рН приводит к понижению ферментативной активности. Влияние рН на активность ферментов связано с ионизацией функциональных групп аминокислотных остатков данного белка, обеспечивающих оптимальную конформацию активного центра фермента. При изменении рН от оптимальных значений происходит изменение ионизации функциональных групп молекулы белка. Например, при закислении среды происходит протонирование свободных аминогрупп (NH 3 +), а при защелачивании происходит отщепление протона от карбоксильных групп (СОО -). Это приводит к изменению конформации молекулы фермента и конформации активного центра; следовательно, нарушается присоединение субстрата, кофакторов и коферментов к активному центру. Кроме того, рН среды может влиять на степень ионизации или пространственную организацию субстрата, что также влияет на сродство субстрата к активному центру. При значительном отклонении от оптимального значения рН может происходить денатурация белковой молекулы с полной потерей ферментативной активности. Оптимум значения рН у разных ферментов различный. Ферменты, работающие в кислых условиях среды (например, пепсин в желудке или лизосомальные ферменты), эволюционно приобретают конформацию, обеспечивающую работу фермента при кислых значениях рН. Однако большая часть ферментов организма человека имеет оптимум рН, близкий к нейтральному, совпадающий с физиологическим значением рН.

Зависимость скорости ферментативной реакции от количества субстрата . Если концентрацию ферментов оставить постоянной, изменяя только количество субстрата, то график скорости ферментативной реакции описывают гиперболой. При увеличении количества субстрата начальная скорость возрастает. Когда фермент становится полностью насыщенным субстратом, т.е. происходит максимально возможное при данной концентрации фермента формирование фермент-субстратного комплекса, наблюдают наибольшую скорость образования продукта. Дальнейшее повышение концентрации субстрата не приводит к увеличению образования продукта, т.е. скорость реакции не возрастает. Данное состояние соответствует максимальной скорости реакции Vmax. Таким образом, концентрация фермента - лимитирующий фактор в образовании продукта. Ферментативный процесс можно выразить следующим уравнением:

где k1 - константа скорости образования фермент-субстратного комплекса; k-1 - константа скорости обратной реакции, распада фермент-субстратного комплекса; k2 - константа скорости образования продукта реакции.

.Классификация и номенклатура ферментов. Изоферменты. Единицы измерения активности и количества ферментов.

Каждый фермент имеет 2 названия. Первое - короткое, так называемое рабочее, удобное для повседневного использования. Второе (более полное) - систематическое, применяемое для однозначной идентификации фермента.

Рабочее название. В названии большинства ферментов содержится суффикс "аза", присоединённый к названию субстрата реакции, например уреаза, сахараза, липаза, нуклеаза или к названию химического превращения определённого субстрата, например лактатдегидрогеназа, аденилатциклаза, фосфо-глюкомутаза, пируваткарбоксилаза. Согласно российской классификации ферментов (КФ), названия ферментов пишутся слитно. Однако в употреблении сохранился ряд тривиальных, исторически закреплённых названий ферментов, которые не дают представления ни о субстрате, ни о типе химического превращения, например трипсин, пепсин, ренин, тромбин.

Классы ферментов . Международный союз биохимии и молекулярной биологии в 1961 г. разработал систематическую номенклатуру, согласно которой все ферменты разбиты на 6 основных классов в зависимости от типа катализируемой химической реакции. Каждый класс состоит из многочисленных подклассов и подподклассов с учётом преобразуемой химической группы субстрата, донора и акцептора преобразуемых группировок, наличия дополнительных молекул и т.д. Каждый из 6 классов имеет свой порядковый номер, строго закреплённый за ним.

1. Оксидоредуктазы. Катализируют различные окислительно-восстановительные реакции с участием 2 субстратов (перенос е - или атомов водорода с одного субстрата на другой).

2. Трансферазы. Катализируют перенос функциональных групп от одного соединения к другому. Подразделяют в зависимости от переносимой группы.

3. Гидролазы. Катализируют реакции гидролиза (расщепления ковалентной связи с присоединением молекулы воды по месту разрыва). Подразделяют в зависимости от расщепляемой связи.

4. Лиазы. К лиазам относят ферменты, отщепляющие от субстратов негидролитическим путём определённую группу (при этом могут отщепляться СО 2 , Н 2 О, NH 2 ,SН 2 и др.) или присоединяющие чаще всего молекулу воды по двойной связи.

5. Изомеразы. Катализируют различные внутримолекулярные превращения. Подразделяют в зависимости от типа реакции изомеризации.

6. Лигазы (синтетазы). Катализируют реакции присоединения друг к другу двух молекул с образованием ковалент-ной связи. Этот процесс сопряжён с разрывом фосфоэфирной связи в молекуле АТФ (или других нуклеозидтрифосфатов) или с разрывом макроэргических связей других соединений. В первом случае (при использовании энергии гидролиза АТФ) такие ферменты называют лигазами, или синтетазами

Изоферменты , или изоэнзимы - это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одноморганизме, но, как правило, в разных его клетках, тканях или органах. Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.

Одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов

. .

Количество единиц активности nME определяют по формуле:

В 1973 г. была принята новая единица активности ферментов: 1 катал (кат), соответствующий такому количеству катализатора, которое превращает 1 моль субстрата за 1 с.

Международная единица ферментативной активности ME связана с каталом следующими равенствами:

1 кат = 1 моль S/c = 60 моль S/мин = 60х106 мкмоль/мин = 6х107 ME,

1 ME = 1 мкмоль/мин = 1/60 мкмоль/с = 1/60 мккат = 16,67 нкат.

В медицинской и фармацевтической практике для оценки активности ферментов часто используют международные единицы активности - ME. Для оценки количества молекул фермента среди других белков данной ткани определяют удельную активность (уд. ак.) фермента, численно равную количеству единиц активности фермента (nМЕ) в образце ткани, делённому на массу (мг) белка в этой ткани.

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняют создание единой четкой их классификации на какой-либо одной основе. Белки можно классифицировать по их составу (простые, сложные), структуре (фибриллярные, глобулярные, промежуточные), функциям. Рассмотрим подробнее структурную классификацию.

Фибриллярные белки сильно вытянуты (наиболее важна вторичная структура) и выполняют структурные функции.

Глобулярные белки, которые в грубом приближении могут быть представлены в виде сфер (наиболее важной является третичная структура), принимают участие в таких специфических процессах, как катализ, транспорт, регуляция.

Кроме перечисленных выше типов белков, в организме имеются небольшие или бедные углеводородными группами полипептиды, которые могут сами по себе не иметь фиксированной структуры, но приобретать ее при взаимодействии с другими макромолекулами. Следует отметить, что данная классификация не может претендовать на полноту, так как существуют белки, которые не относятся ни к одному из этих классов. Например, миозин, который по своей структуре содержит признаки и фибриллярного и глобулярного белка.

Белок с исходной, природной укладкой цепи, т. е. имеющий трехмерную конфигурацию, называется нативным, белок с развернутой, беспорядочной укладкой цепи - денатурированньш. Превращение нативного белка в денатурированный, т. е. утрата белком его трехмерной конфигурации, называется денатурацией (рис. 3.15). Вызывать денатурацию могут разнообразные факторы. В частности, плотная укладка цепи белка обычно нарушается при нагревании. Тепловая денатурация - общее свойство белков. После денатурации биологически активный белок может самопроизвольно свернуться в исходную конформацию с восстановлением своей активности. Процесс сворачивания денатурированного белка называется ренатурацией.


Рис. 3.15. Денатурация белковой молекулы:

а - исходное состояние; б - начинающееся обратимое нарушение молекулярной структуры; в - необратимое развертывание полипептидной цепи

При длительном воздействии денатурирующего агента (температуры, химического вещества, среды с различным pH) денатурация становится необратимой (на рис. 3.15 этот процесс обозначен стрелкой между состояниями белковой молекулы б и в). Большинство белков денатурирует при нагревании их растворов выше 50-60 °С.

Денатурированный белок теряет способность растворяться в воде. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). Тот факт, что денатурированный белок полностью теряет свои биологические свойства, подтверждает тесную связь между структурой белковой молекулы и функцией, которую она выполняет в организме.

Способность белковой молекулы спонтанно ренатурироваться при снятии внешнего агрессивного воздействия говорит о том, что аминокислотная последовательность сама определяет пространственную структуру белка без участия какого-либо внешнего регулирующего центра.

В настоящее время денатурация и ренатурация глобулярных белков in vitro интенсивно исследуются, так как эти процессы связаны с проблемой самоорганизации белка, т. е. с вопросом о том, как белковая цепь «находит» свою уникальную структуру среди гигантского числа возможных альтернатив.

Фибриллярные белки составляют основу не растворимых в воде и прочных материалов, таких как рога, копыта, ногти, шерсть, волосы, перья, кожа, сухожилия, межклеточное вещество костной ткани. Волос - длинное достаточно прочное волокно, основой которого является белок - а-кератин. В основе сухожилий другой белок - коллаген. Эластичность и упругость стенкам артерий или легочных альвеол придает эластин. Общей особенностью этих белков является участие в формировании их пространственной структуры ковалентных непептидных связей.

Кератины волос и шерсти образуют промежуточные фила- менты, состоящие из длинных полипептидных цепей с крупными доменами, образованными а-спиралями и содержащими повторяющиеся последовательности из семи аминокислотных остатков (гептапептиды). Две направленные одинаково цепи кератина образуют суперспираль, в которой остатки неполярных аминокислот обращены внутрь и тем самым защищены от воздействия воды. Такая структура дополнительно стабилизируется многочисленными дисульфидными связями, образованными остатками цистеина соседних цепей. Суперспиральные димеры, в свою очередь, объединяются с образованием тетрамеров, подобных четырехжильному канату.

Коллаген образуется вне клеток из секретируемого ими белка - проколлагена, который превращается в коллаген в результате взаимодействия соответствующих ферментов. Молекула проколлагена представляет собой тройную суперспираль, образованную тремя скрученными вместе специализированными полипептидами. Далее при отщеплении концевых полипептидов образуется тропоколлаген, который упаковывается в коллагеновые волокна. Каждый из трех полипептидов в тропоколлагене находится в виде левосторонней спирали (в отличие от обычных правосторонних а-спиралей у белков). Примерно треть аминокислотных остатков в тропоколлагене представлена пролином, а каждый третий остаток - глицином.

В ходе образования коллагена многие остатки пролина и лизина в присутствии аскорбиновой кислоты гидроксилируются, превращаясь соответственно в гидроксипролин и гидроксилизин:


Эти остатки оказываются включенными в белок не в ходе его матричного синтеза, а в результате химического посттрансляционного превращения входящих в его состав аминокислот. Гидро- ксилирование пролина требует в качестве кофактора (небелкового компонента, необходимого для эффективной работы) аскорбиновую кислоту (витамин С), которая нужна для поддержания в восстановленном состоянии иона Fe 2+ в активном центре фермента прол ил-гидроксил азы. При недостатке витамина С нарушается образование соединительных тканей, что вызывает тяжелое заболевание - цингу.

Три спирально навитые друг на друга молекулы тропоколлаге- на ковалентно связаны между собой, образуя прочную структуру. Такая ассоциация невозможна в обычной белковой спирали, так как этому препятствуют объемные боковые цепи. В коллагене спирали более вытянуты (на один виток приходится 3 остатка, вместо 3,6), так как каждый третий аминокислотный остаток - глицин, поэтому спирали в этих точках максимально приближены друг к другу. Дополнительная стабилизация структуры осуществляется водородными связями гидроксилированных остатков лизина и пролина.

Молекулы тропоколлагена содержат около 1000 аминокислотных остатков. Они собираются в коллагеновые фибриллы, стыкуясь «голова к хвосту». Пустоты в этой структуре при необходимости могут служить местом первоначального отложения кристаллов гидроксиапатита Са 5 (0Н)(Р0 4)з, играющего важную роль в минерализации костей.

Коллаген сухожилий подвергается ферментативной модификации - в концевых частях тропоколлагеновых цепей ковалентно сшиваются остатки лизина. Таким образом, сухожилия представляют собой пучки параллельно ориентированных фибрилл. В отличие от сухожилий в коже коллагеновые фибриллы образуют подобие неупорядоченной двумерной сетки.

Эластин по своему строению отличается от коллагена и а- кератина. Он содержит обычные а-спирали, образующие поперечно-сшитую сеть, которая своей необычайно высокой эластичностью обязана уникальному способу связывания боковых цепей лизина:

четыре сближенных лизиновых остатка

формируют так называемую десмозиновую структуру, объединяющую в один узел четыре участка пептидных цепей (рис. 3.16).

Рис. 3.16. Химическая структура десмозина

Глобулярные белки. Большинство белковых молекул в организме имеет глобулярное строение. Пептидная связь в глобулярных белках в естественном состоянии свернута в компактные структуры - глобулы, которые в первом грубом приближении могут быть представлены в виде шара или не слишком вытянутого эллипсоида, в отличие от фибриллярных белков, где длинные полипептидные цепи вытянуты вдоль одной оси.

Глобулы устойчивы в водных системах вследствие того, что полярные группы основной и боковых цепей сосредоточены на поверхности, находясь в контакте с водой, а неполярные обращены в глубь молекулы и защищены от этого контакта. На поверхности белковой глобулы иногда образуются ионные связи - солевые мостики.

Оказавшиеся внутри глобулы >N-H и >С=0-группы основной цепи с образовавшимися водородными связями формируют в результате а-спирали и (3-слои. Дестабилизирующим фактором пространственной упаковки является наличие в глубине глобулы каких-то групп, потенциально способных образовывать ионные и водородные связи, но реально лишенных партнеров.

При физиологических условиях состояние белка, имеющего нативную трехмерную структуру, термодинамически стабильно, т. е. соответствует минимуму свободной энергии. Информация, необходимая для сворачивания белка в нативную конформацию, заложена в его аминокислотной последовательности. Поэтому в принципе теоретически можно предсказать трехмерную структуру любого белка исходя из его аминокислотной последовательности. Однако предсказание третичной структуры остается нерешенной проблемой молекулярной биологии. Сворачивание молекулы белка из развернутого состояния должно осуществляться единственным путем. Если предположить, что белковая молекула состоит из 50 остатков, каждый из которых может принимать 10 разных конформаций, то общее число возможных конформаций составит 10 50 , и если характерное время молекулярных перестроек составляет 10“ 13 с, то для того, чтобы перепробовать все конформации, потребуется 10 37 с (~ Ю 30 лет). Следовательно, существует направленный путь сворачивания белка.

Стабильность свернутой молекулы белка в водном окружении крайне низка. Основной движущей силой сворачивания является энтропийный гидрофобный эффект, вследствие которого неполярные группы стремятся выйти из водного окружения и оказаться внутри глобулы. Существует и обратный эффект, препятствующий сворачиванию и обусловленный тем, что для свернутой молекулы белка число разрешенных конформаций основной и боковых цепей меньше, чем у развернутой.

Гемоглобин (НЪ) - белок, переносящий кислород от легких к тканям. НЬ локализован в красных кровяных клетках - эритроцитах.

Как уже отмечалось (см. рис. 3.14), гемоглобин состоит из четырех полипептидных цепей, каждая из которых содержит гем (рис. 3.17). Функциональная взаимосвязь этих цепей такова, что присоединение О2 к одному из атомов железа повышает сродство к кислороду у трех других.

Гемоглобины - это целый класс белков, представители которого различаются одним-двумя аминокислотными остатками или их последовательностью. У взрослого человека гемоглобин типа НЬА. Кроме НЬА, существует эмбриональный гемоглобин HbF, исчезающий после рождения. Молекулярная масса обоих гемоглобинов приблизительно одинакова (64 500), они отличаются только последовательностью аминокислотных остатков. Наряду с обычно имеющимися гемоглобинами в организме человека встречаются аномальные HbS, HbG, НЬС, НЬН и т. д. Общность всех гемоглобинов - в способе укладки их полипептидных цепей вокруг большого плоского кольца гема , идентичного для всех, в центре которого находится атом железа (порфириновое кольцо).

Г ем состоит из атомов углерода, азота и водорода, образующих плоское кольцо, называемое порфирином (рис. 3.17). В центре кольца находится атом Fe, связанный с атомами кольца четырьмя координационными связями (из шести возможных). К гему примыкают два остатка гистидина (His). Имидозольная группа гистидина (F-8) связана координационной связью с атомом Fe через пятую координационную связь. Шестая связь служит для соединения с молекулой О2.

Рис. 3.17.

Миоглобин - мышечный белок, переносящий кислород в мышечных клетках. Он состоит из одной полипептидной цепи, содержит только а-спирали, соединенные петлями, и имеет один гем. Аминокислотная последовательность миоглобина отличается от последовательностей a-цепей гемоглобина. Однако третичная структура a-цепей гемоглобина и миоглобина идентична. Общий способ свертывания а-спиралей глобулярных белков называется глобиновым типом сворачивания.

Основана на различиях по составу или по форме.

По составу белки делят на две группы:

    Простые белки (протеины) состоят только из аминокислот: протамины и гистоны обладают основными свойствами и входят в состав нуклеопротеидов. Гистоны участвуют в регуляции активности генома. Проламины и глютелины – белки растительного происхождения, составляют основную массу клейковины. Альбумины и глобулины – белки животного происхождения. Богаты ими сыворотка крови, молоко, яичный белок, мышцы.

    Сложные белки (протеиды = протеины) содержат небелковую часть – простетическую группу. Если простетической группой является пигмент (гемоглобин, цитохромы), то это хромопротеиды. Белки, связанные с нуклеиновыми кислотами – нуклеопротеиды. Липопротеины – связаны с каким – либо липидом. Фосфопротеиды – состоят из белка и лабильного фосфата. Их много в молоке, в ЦНС, икре рыб. Гликопротеиды связаны с углеводами и их производными. Металлопротеины – белки, содержащие негеминовое железо, а также образующие координационные решетки с атомами металлов в составе белков – ферментов.

По форме различают

Глобулярные белки – это плотно свернутые полипептидные цепи сферической формы, для них важна третичная структура. Хорошо растворимы в воде, в разбавленных растворах кислот, оснований, солей. Глобулярные белки выполняют динамические функции. Например, инсулин, белки крови, ферменты.

Фибриллярные белки – молекулы вторичной структуры. Они построены из параллельных, сравнительно сильно растянутых пептидных цепей, вытянутой формы, собранные в пучки, образуют волокна (кератин ногтей, волос, паутины, шелка, коллаген сухожилий). Выполняют преимущественно структурную функцию.

Функции белков:

    Строительная – белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

    Транспортная – некоторые белки способны присоединять к себе различные вещества и переносить (доставлять) их из одного места клетки в другое, и к различным тканям и органам тела. Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ. В состав клеточных мембран входят особые белки, обеспечивающие активный и строго избирательный перенос некоторых веществ и ионов из клетки и в клетку – осуществляется обмен с внешней средой.

    Регуляторная функция – принимают участие в регуляции обмена веществ. Гормоны влияют на активность ферментов, замедляя или ускоряя обменные процессы, изменяют проницаемость клеточных мембран, поддерживают постоянство концентрации веществ в крови и клетках, участвуют в процессе роста. Гормон инсулин регулирует уровень сахара в крови путем повышения проницаемости клеточных мембран для глюкозы, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

    Защитная функция = Иммунологическая. В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Синтез иммуноглобулинов происходит в лимфоцитах. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

    Двигательная функция. Сократительные белки обеспечивают движение клеток и внутриклеточных структур: образовании псевдоподий, мерцании ресничек, биении жгутиков, сокращении мышц, движении листьев у растений.

    Сигнальная функция. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

    Запасающая функция. В организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в селезенке, образуя комплекс с белком ферритином. К запасным относятся белки яйца, молока.

    Энергетическая функция. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Распад идет сначала до аминокислот, а потом – до воды, аммиака и углекислого газа. Однако в качестве источника энергии белки используются тогда, когда израсходованы жиры и углеводы.

    Каталитическая функция. Ускорение биохимических реакций под действием белков - ферментов.

    Трофическая. Питают зародыш на ранних стадиях развития и запасают биологически ценные вещества и ионы.

Липиды

Большая группа органических соединений, являющихся производными трехатомного спирта глицерина и высших жирных кислот. Поскольку в их молекулах преобладают неполярные и гидрофобные структуры, то они нерастворимы в воде, а растворимы в органических растворителях.

Благодаря необъятному количеству возможных комбинаций при синтезе белка из 20 аминокислот существует множество разнообразных аминокислотных последовательностей, каждая из которых потенциально соответствует определенному белку. Все эти белки легко сгруппировать по отдельным классам, выделяя определенный признак – функцию или особенности строения.

Классификация по функции

В соответствии с биологическими функциями выделяют:

  • структурные белки (коллаген , кератин),
  • ферментативные (пепсин , амилаза),
  • транспортные (трансферрин , альбумин , гемоглобин),
  • резервно-пищевые (белки яиц и злаков),
  • сократительные и двигательные (актин, миозин, тубулин),
  • защитные (иммуноглобулины, тромбин, фибриноген),
  • регуляторные (соматотропный гормон , адренокортикотропный гормон , инсулин).

Классификация по строению

В зависимости от формы молекулы выделяют глобулярные и фибриллярные белки. В глобулярных белках соотношение продольной и поперечной осей составляет менее 10 и в большинстве случаев не более 3-4. Эти белки характеризуются компактной трехмерной укладкой полипептидных цепей. Например: инсулин , альбумин , глобулины плазмы крови.

Фибриллярные белки имеют соотношение осей более 10. Они состоят из пучков полипептидных цепей, спиралью навитых друг на друга и связанные между собой поперечными ковалентными и водородными связями. Выполняют защитную и структурную функции. Например: кератин, миозин, коллаген .

По количеству белковых цепей в одной молекуле выделяют мономерные белки, которые имеют одну субъединицу (протомер) и полимерные белки, имеющие несколько субъединиц. Например, к мономерным белкам относятся альбумины , миоглобин, к полимерным - гемоглобин (4 субъединицы), ферменты лактатдегидрогеназа и креатинкиназа (4 и 2 субъединицы, соответственно), гексокиназа (2 субъединицы). Субъединицы в белке могут быть как одинакового, так и различного строения.

Есть и более крупные белки. К ним относятся РНК-полимераза E.coli – 5 цепей, аспартаткарбамоилтрансфераза – 12 протомеров, глутаминсинтетаза – 12 протомеров, пируватдегидрогеназа – 72 белковых цепи.

По химическому составу все белки подразделяют на простые и сложные . Простые белки содержат в структуре только аминокислоты (

Классификация белков по строению.

По структурным признакам все белки делятся на две большие группы: простые белки (протеины) и сложные белки (протеиды);

· Простые беки (протеины). Структура их представлена только полипептидной цепью , т.е. они состоят только из аминокислот и делятся на несколько подгрупп. В подгруппы объединяются белки близкие по молекулярной массе, аминокислотному составу, свойствам и функциям . В чистом виде простые белки встречаются редко. Как правило, они входят в состав сложных белков.

· Сложные белки (протеиды) состоят из белкового компонента , представленного каким-либо простым белком, и небелкового компонента , называемого простетической частью . В зависимости от химической природы простетической части сложные белки делятся на подгруппы.

Белки

Протамины хромопротеины

Гистоны нуклеопротеины

Альбумины фосфопротеины

Глобулины гликопротеины

Проламины протеогликаны

Глютелины липопротеины

Протеиноиды металлопротеины

Характеристика простых белков.

Протамины и гистоны имеют наименьшую молекулярную массу , в их составе преобладают диаминокарбоновые АК: аргинин и лизин (20-30%), поэтому обладают резко выраженными основными свойствами (ИЭТ – 9,5-12,0), имеют положительный заряд . Входят в состав сложных белков нуклеопротеинов. В составе нуклеопротеинов выполняют функции: – структурную (участвуют в формировании третичной структуры ДНК) и регуляторную (способны блокировать передачу генетической информации с ДНК на РНК).

Альбумины – белки небольшой молекулярной массы (15000-70000), кислые (ИЭТ 4,7), так как содержат большое количество глутаминовой и аспарагиновой кислот , имеют отрицательный заряд . Высаливаются насыщенным раствором сульфата аммония . Функции альбуминов: транспортная - переносят свободные жирные кислоты, холестерин, гормоны, лекарственные вещества, желчные пигменты, т.е. являются неспецифическими переносчиками.

За счет высокой гидрофильности альбумины поддерживают онкотическое давление крови,

участвуют в поддержании кислотно-основного состояния (КОС) крови.

Глобулины – белки с большей, чем у альбуминов, молекулярной массой (>100000), слабокислые или нейтральные белки (ИЭТ 6-7,3) , так как содержат меньше, чем альбумины, кислых аминокислот. Осаждаются полунасыщенным (50%) раствором сульфата аммония . Входят в состав сложных белков – гликопротеинов и липопротеинов и в их составе выполняют функции: транспортную, защитную (иммуноглобулины), каталитическую, рецепторную и др..

Проламины и глютелины - растительные белки, содержатся в клейковине семян злаковых растений, нерастворимы в воде, растворах солей, кислотах и щелочах, но в отличие от всех других белков, растворяются в 60-80% растворе этанола. Содержат 20-25% глутаминовой кислоты, 10-15% пролина .



Понравилась статья? Поделиться с друзьями: