Как сделать спирт из опилок: все способы получения биотоплива. Химические свойства древесины

Статьи Рисунки Таблицы

Сахар из опилок

из "Опыты без взрывов"

Свое название углеводы получили по ошибке. Произошло это в середине прошлого века. Тогда считали, что молекула любого сахаристого вещества отвечает формуле С (Н20) . Все известные тогда углеводы подходили под эту мерку, и формулу глюкозы 6H 206 писали как Сб(Н20)б.
Но позднее были открыты и такие сахара, которые оказались исключением из правила. Так, явный представитель углеводов рамиоза (она тоже дает реакцию Молиша) имеет формулу СбН)205. И хотя неточность в названии целого класса соединений была очевидной, термин углеводы стал уже настолько привычным, что его не стали менять. Впрочем, в наши дни многие химики предпочитают иное название - сахара.
Один из сахаров мы попытаемся получить из опилок гидролизом, т.е. разложением водой. Это очень распространенный химический процесс. Опилки и другие древесные отходы содержат углевод клетчатку (целлюлозу). Из нее на гидролизных заводах готовят глюкозу, которую можно использовать затем по-разному чаще всего ее сбраживают, превращая в спирт, исходный продукт для множества химических синтезов. Большая и самостоятельная отрасль химической индустрии носит название гидролизной промышленности.
Прежде чем воспроизвести процесс гидролиза древесины, попытаемся понять, в чем его суть, а для этого удобнее будет начать не с опилок, а с огурцов и лучинок.
Вымойте свежий огурец, натрите его на терке и выжмите сок. Сок можно отфильтровать, но это не обязательно.
Приготовьте в пробирке гидроксид меди Си(0Н)2- Для этого добавьте 2-3 капли раствора медного купороса к 0,5 - 1 мл раствора едкого натра. К полученному осадку прибавьте равный объем огуречного сока и встряхните пробирку. Осадок растворится, получится синий раствор.
Такая реакция характерна для многоатомных спиртов, т.е. для спиртов, которые содержат несколько гидроксильных фупп.
Теперь нагрейте до кипения (или поставьте в кипящую воду) пробирку с полученным синим раствором. Он сначала пожелтеет, затем станет оранжевым, а после охлаждения выпадет красный осадок оксида меди Си20.
наверное, догадываетесь, что этот опыг совсем не обязательно ставить именно с соком огурца. Он хорошо получается и с другими сладкими соками - виноградным, морковным, яблочным, фушевым. Можно взять для опыта и туалетную огуречную воду, которая продается в парфюмерных магазинах. И, конечно, просто таблетки глюкозы.
Теперь второй предварительный опыт - осахаривание лучинки.
Приготовьте раствор серной кислоты к одному объему воды прилейте один объем концентрированной серной кислоты (ни в коем случае не лить воду в кислоту). В пробирку с раствором опустите лучинку и нагрейте раствор до кипения. Лучинка при этом обуглится, но опыту это не помешает.
После нагревания выньте лучинку, опустите ее в другую пробирку с 1 - 2 мл воды и прокипятите. В обеих пробирках теперь есть глюкоза. Проверить это можно, добавив к растворам две-три капли медного купороса, а затем и едкий натр - появится знакомая синяя окраска. Если же этот раствор прокипятить, вйпадет, как мы и ожидали, красный осадок оксида меди Си20. Итак, глюкоза обнаружена.
что наша лучинка осахарилась, и есть результат гидролиза целлюлозы (а на ее долю в древесине приходится около 50%). Как и при гидролизе крахмала, серная кислота в этом процессе не расходуется, она ифает роль катализатора.
Наконец, мы подошли к основному опыту, который был обещан в заглавии получение сахара из опилок.
В фарфоровую чашку насыпьте 2-3 столовые ложки древесных опилок и смочите их водой. Добавьте еще немного воды и равное количество ранее приготовленного раствора серной кислоты (1 1), жидкую кашицу хорошо перемешайте. Закройте крышкой и поставьте в духовку газовой плиты (или в русскую печь) примерно на час, можно на немного меньше.
Содержимое чашки слейте в молочную бутылку, взболтайте жидкость и дайте постоять несколько часов. Сульфат кальция, образовавшийся при нейтрализации кислоты, осядет на дно, а сверху останется раствор глюкозы. Осторожно слейте его в чистую чашку (лучше по стеклянной палочке) и отфильтруйте.
Осталась последняя операция - выпаривание воды на водяной бане. После нее на дне остаются светло-желтые кристаллы глюкозы. Их можно попробовать на вкус, но и только - продукт недостаточно чистый.
мы выполнили четыре операции варку опилок с раствором серной кислоты, нейтрализацию кислоты, фильтрование и выпаривание. Именно так и получают глюкозу на гидролизных заводах, только, конечно, не в фарфоровых чашках...
И еше один промышленный процесс мы можем воспроизвести без особых затруднений превратим один сахар в два других.
При долгом хранении домашнее варенье часто засахаривается. Это происходит потому, что сахар кристаллизуется из сиропа. С вареньем же, которое продается в магазине, такая беда случается гораздо реже. Дело в том, что на консервных заводах, кроме свекловичного или тростникового сахара, сахарозы СцНггОц, используют и другие сахаристые вешества например инвертный сахар. Что такое инверсия сахара и к чему она приводит, вы узнаете из следующего опыта.

Пишет блогер Сергей Анашкевич:

Помните анекдот, как Василий Иванович попросил Петьку спрятать от солдат цистерну спирта, и тот закрасил надпись «СПИРТ», написав вместо нее «C2H5OH»? А солдаты на утро были в стельку. Как же - написано ОН. Оказалось, и вправду, он!

Удивительно, но в сети практически нет подробных репортажей о том, как делают ЕГО - главное сырье для водки.

Как делают саму водку - полно. От сивухи до элитных марок. А спирт - нет!

Придется восполнить этот пробел, благо на прошлой неделе я побывал на Усадском спиртзаводе неподалеку от Казани, входящем в концерн «Татспиртпром».

Здесь делают спирт самой высокой категории «Альфа», который постепенно вытесняет некогда топовый «Люкс» из производства качественных марок водки. Все тем же древним методом, изобретенным еще до нашей эры, реализованным в промышленных масштабах в XIV веке и широко практикуемым в сараях и гаражах во время перестройки. Старой доброй перегонкой…

На входе - зерно из мешка, на выходе - чистейшая 96-градусная жидкость…

Как известно, веселящее действие алкогольных напитков и способы их получения известны человечеству еще с библейских времен: помните, Ной случайно выпил перебродивший фруктовый сок и опьянел. Вообще, ученые предполагают, что идея химической дистилляции жидкостей возникла еще в I тысячелетии до н.э. Впервые процесс дистилляции описал Аристотель (384–320 гг. до н.э.). Многие алхимики того времени занимались совершенствованием техники перегонки, считая, что путем дистилляции им удается выделить душу вина. Благодаря этому продукт дистилляции и был назван «духом вина» (от латинского «spiritus vini»).

Процесс получения спирта был открыт в различных регионах земного шара практически одновременно. В 1334 году врач-алхимик из Прованса Арно де Вилльгер (Франция) впервые получил винный спирт из виноградного вина, считая его целительным средством. В середине XIV века некоторые французские и итальянские монастыри производили винный спирт под названием «Aquavitae» - «вода жизни», а в 1386 году, благодаря генуэзским купцам, спирт добрался и до Москвы.

Производство этилового спирта было начато в Европе после изобретения в Италии в XI веке дистилляционного аппарата. Несколько веков этиловый спирт почти не применяли в чистом виде, разве что в лабораториях алхимиков. Но в 1525 году знаменитый Парацельс заметил, что эфир, получающийся при нагревании спирта с серной кислотой, обладает снотворным действием. Он описал свой опыт с домашними птицами. А 17 октября 1846 года хирург Уоррен усыпил эфиром первого пациента.


Постепенно спирт разделился на пищевой и технический, получаемый путем расщепления древесных отходов. В Англии технический спирт был освобожден от повышенных налогов на продажу, так как рыночная стоимость спиртных напитков окупала государственные сборы, а вот врачам и промышленникам такая цена была не под силу. Для предотвращения пищевого употребления токсичного промышленного спирта его смешивали с метанолом и другими неприятными на запах добавками.

Впоследствии спирт получил мгновенное распространение в медицине в связи с постоянными войнами. В 1913 году на территории Российской империи было зафиксировано около 2400 заводов, производивших в основном водку и вино. Позже произошло обособление производства спирта и водки.

С началом Первой мировой войны производство водки фактически прекратилось, выработка спирта также снизилась. Производство начало восстанавливаться лишь в 1925-1926 годах, а грандиозное восстановление спиртовой промышленности было начато лишь в 1947 году, начали интенсивно применять новые научно-технические технологии и достижения. В 1965 году в СССР работало 428 заводов с годовым выпуском 127,8 млн дал спирта, а к 1975 году выпуск спирта возрос до 188,1 млн дал. В последующие годы это производство постепенно снижалось из-за увеличивающегося выпуска напитков с меньшей крепостью.

В зависимости от сырья спирт бывает пищевой и технический.

Пищевой производится только из пищевого сырья. Наиболее распространенным и экономичным сырьем для получения спирта является картофель. Картофельный крахмал легко разваривается, клейстеризуется и осахаривается. Кроме картофеля для производства спирта используются зерновые - пшеница, рожь, ячмень, овес, кукуруза, просо, а также сахарная свекла, сахарная патока или меласса.

Технический спирт получают из древесины или нефтепродуктов, подвергаемых кислотному гидролизу.

Теперь о категориях спирта и о том, почему «Альфа» вытесняет «Люкс». Все дело в том, что спирт «Альфа» должен вырабатываться из пшеницы, ржи или из их смеси, то есть исключительно из зернового сырья, в отличие от других спиртов, которые могут вырабатываться также и из смеси зерна с картофелем.

Второе важное отличие «Альфы» от «Люкса» - пониженное содержание ядовитого метилового спирта: норма его содержания составляет всего 0,003% в пересчете на безводный спирт, тогда как для спирта «Люкс» - 0,02%. Это существенно!

На Усладском спиртзаводе спирт производят исключительно из пшеницы и только одной категории - «Альфа».

Пшеницу привозят в специальных зерновозах и помещают в высокие бочки-элеваторы, откуда она далее поступает на производство.


Зерно для производства спирта должно быть хорошего качества и влажностью не более 17%, иначе есть высокий риск прелости, что скажется на качестве конечного продукта.

Из емкостей-хранилищ при помощи огромного и мощного насоса-турбины зерно «перекачивается» через высокие колонки на первичную переработку.

Насос для «перекачки» зерна из хранилища на очистку:


Первая задача - очистить зерно от всех примесей, как твердых, так и обычного сора, шелухи и т.д.

Так что в самом начале оно попадает на сепаратор.

Сначала пшеницу просеивают через сито, на котором остаются все крупные предметы.


Этот щебень накопился около сепаратора всего за полдня!



Вот что остается после того, как зерно «ушло» по трубам дальше на дробление:


Дробилка превращает зерно в грубую муку. Это необходимо для дальнейшего разваривания зерна и высвобождения из него крахмала.

Разваривание зерна происходит с целью разрушения его клеточных стенок. В результате этого крахмал высвобождается и переходит в растворимую форму. В таком состоянии он намного легче осахаривается ферментами. Зерно обрабатывается паром при избыточном давлении 500 кПа. Когда разваренная масса выходит из варочного аппарата, сниженное давление приводит к образованию пара (из содержащейся в клетках воды).

Подобное увеличение в объеме разрывает клеточные стенки и превращает зерно в однородную массу. Температура разваривания составляет 172°С, а продолжительность варки - около 4 минут.


За всеми процессами, происходящими на спиртзаводе, наблюдают операторы в аппаратном зале. Здесь они видят полностью все происходящее на каждом участке, так как процесс производства спирта непрерывен и осуществляется в режиме 24/7.

Измельченное зерно смешивают с водой в пропорции 3 литра на 1 кг зерна. Зерновой замес нагревается паром (75°С) и подается насосом в контактное отверстие установки. Именно здесь происходит мгновенный нагрев кашицы до температуры 100°С. После этого подогретый замес помещается в варочный аппарат.

В процессе осахаривания в охлажденную массу добавляют солодовое молоко для расщепления крахмала. Активное химическое взаимодействие приводит к тому, что продукт становится абсолютно пригодным для дальнейшего процесса сбраживания. В результате получается сусло, которое содержит 18% сухого сахара.

Когда из массы делается проба на йод, окрас сусла должен оставаться неизменным.


Сбраживание сусла начинается при введении в осахаренную массу производственных дрожжей. Мальтоза расщепляется до глюкозы, которая в свою очередь сбраживается в спирт и углекислый газ. Также начинают образовываться вторичные продукты брожения (эфирные кислоты и т.д.).

Процесс сбраживания проходит в огромных закрытых бродильных установках, которые предотвращают потери спирта и выделение диоксида углерода в производственный цех.

Установки настолько большие, что верхняя и нижняя их части находятся на разных этажах!


Вот так выглядит брага в установке. Заглядывать следует очень осторожно, чтобы не вдохнуть пары углекислого газа.


Выделяющиеся в процессе брожения диоксид углерода и пары спирта из бродильной установки поступают в специальные отсеки, где происходит отделение водно-спиртовой жидкости и диоксида углерода. Содержание этилового спирта в бражке должно равняться до 9,5 об.%.

Кстати, на заводе нам предложили попробовать бражку.


Повсюду в цехах можно заметить вот такие фонтанчики. Они предназначены для промывки глаз в случае попадания в них опасных продуктов производства, которых здесь хватает.


Далее приступают к отгонке спирта из бражки и его ректификации. Спирт начинает выделяться из бражки в результате кипения при разных температурах. Сам механизм перегонки основан на следующей закономерности: спирту и воде свойственны разные температуры кипения (вода - 100 градусов, спирт - 78°С). Выделенный пар начинает конденсироваться и собираться в отдельную емкость. Очистку спирта от примесей производят на ректификационной установке.

Над нами расположен этаж с ректификационными установками. Здесь, под ними, проходит целая сеть трубопроводов - какие-то для спирта, какие-то для воды, какие-то для пара, какие-то для побочных продуктов.


А в ректификационном зале жарко!!!

Сырой спирт (спирт-сырец), получаемый на основном этапе производства, не может быть использован для пищевых целей, так как содержит много вредных примесей (сивушные масла, метиловый спирт, сложные эфиры). Многие примеси ядовиты и придают спирту неприятный запах, именно поэтому сырой спирт подвергают очистке - ректификации.

Этот процесс основан на разной температуре кипения этилового, метилового и высших спиртов, сложных эфиров. При этом все примеси условно делят на головные, хвостовые и промежуточные.

Головные примеси имеют более низкую температуру кипения, чем этиловый спирт. К ним относятся уксусный альдегид и отдельные сложные эфиры (этилацетат, этилформиат и др.), образующиеся при перегонке.


Хвостовые примеси отличаются повышенной температурой кипения по сравнению с этиловым спиртом. В их состав входят в основном сивушные масла и метиловый спирт.

Наиболее трудноотделяемой фракцией являются промежуточные примеси (этиловый эфир изомасляной кислоты и другие сложные эфиры).


При очистке спирта-сырца на ректификационных аппаратах производится отделение вредных примесей и повышается концентрация спирта в готовом продукте (с 88 % в спирте-сырце до 96-96,5 % в ректификате).

Готовый спирт крепостью 96% перекачивается в накопительные емкости.


Заглядывать в эти емкости следует еще более осторожно, чем в емкости с брагой. Здесь можно и опьянеть в миг…


Готовый спирт отправляется на контрольные замеры и, если все в порядке, ему присваивается категория «Альфа», а дальше он пойдет на производство водки или другие цели…


Иначе такой бетон называют еще арболитом . Это легкий бетон, получаемый из минерального вяжущего (обычно портландцемента) и древесного заполнителя в виде опилок и стружки, образующихся при пилорамной разделке древесины, древенсная дробленка, костра льна или конопли и др.

Дом, построенный из арболита, получается сухим, теплым, прочным, стены у него не горят, не гниют и хорошо поддаются отделке, по комфортабельности близок к деревянному. Теплозащитные свойства арболита выше, чем у полнотелого кирпича, но ниже, чем у дерева. К примеру, согласно теплотехнических норм толщина стены из этих трех материалов для нормального по влажности климата и разных требуемых значений теплосопротивления R () будет следующей:

Блоки из арболита можно пилить и сверлить, в них легко вколачивать гвозди. Материалы, необходимые для производства арболита, легко доступны, технология изготовления блоков - простейшая при минимальных затратах. Изделия из арболита используют в виде панелей, плит, блоков, стеновых камней. Основной материал (опилки) - в избытке на любой пилораме или деревообрабатывающем предприятии.

Арболит состоит из наполнителя, связующего, некоторых добавок и воды. В качестве связующего применяется портландцемент марки 400. Цемент необходим свежий и без комков. Если комки в нем все же есть, то цемент просеивают через сито с размером ячейки 0,5 мм. Опилки просеивают через такое же сито. В дело пойдет отсев, то есть, та часть опилок, которая через сито не прошла.

В качестве заполнителя лучше всего подходят не просто опилки, а их смесь со стружками. Соотношение опилок и стружек составляет от 1:1 до 1:2. Опилки со стружками необходимо предварительно либо выдержать на открытом воздухе 3-4 месяца, периодически перелопачивая их, либо обработать известковым раствором.

В последнем случае для каждого 1 м 3 опилочного сырья требуется 150-200 л 1,5%-ного известкового раствора, в который помещают заполнитель на 3-4 дня, перемешивая его 1-2 раза в сутки. То есть, на 1 м 3 опилок используют 2,5 кг извести-пушенки, растворенной в 200 литрах воды.

Этот способ позволяет не только ускорить поцесс подготовки опилок, но и наиболее полно удалить из древесных опилок содержащийся в них сахар. Такое освобождение сырья от сахара помогает избежать гниения опилок в блоках, то есть, вспучивания последних.

Соотношение компонентов опилкобетона зависит от того, для какой цели его предполагается использовать. Составы для разных случаев приведены в таблице.

Расход материалов на 8-10 ведер опилкобетона, кг

Если применяется цемент марки 500, то его расход можно уменьшить на 10% от указанного в таблице. Если цемент 300, то расход следует увеличить на 10%. Для справки: ведро 10 л вмещает: цемента - 12 кг, сухих опилок - 1,4 кг, стружки - 1,2 кг, костры - 0,8 кг.

Прочность арболита определяется маркой цемента и специальными минеральными добавками. Последние включают в себя растворимое (жидкое) стекло, хлористый кальций - CaCl 2 , сернокислый кальций - CaSO 4 , гашеную известь - Ca(OH) 2 , сернокислый алюминий - Al 2 (SO 4) 3

Добавки придают арболиту огнестойкость, пластичность, способность противостоять гниению. Наиболее часто в качестве добавки применяют смесь сернокислого кальция и сернокислого алюминия, взятых в соотношении 1:1 по массе, или смесь растворимого стекла и гашеной извести, взятых в том же соотношении.

Среди наиболее доступных компонентов можно использовать жидкое стекло и гашеную известь, которые сначала перемешиваются между собой, а затем растворяются в воде, на которой далее и замешивается арболитовая масса.

В емкость поочередно высыпают отмеренное количество опилок и цемента (слой опилок, слой цемента и т.д.). Затем лопатой компоненты тщательно перемешивают, добиваясь равномерного распределения их в смеси.После этого вливают отмеренное количество воды, в которой уже заранее растворено нужное количество добавок. Смесь снова тщательно перемешивают.

В один прием готовят такое количество смеси, которое необходимо для работы в течение 4-5 часов. Оставленная на более длительное время смесь схватится и станет непригодной для применения.

Свежеприготовленную смесь укладывают в форму и уплотняют. Затем поверхность смеси заглаживают мастерком. По окончании формования конструкции ее поверхность укрывают рубероидом или любой пленкой для предохранения от быстрого высыхания. Твердение смеси будет продолжаться четыре недели.

Жестких рекомендаций по составу опилкобетона нет. Наилучший способ определить нужные пропорции - это пробные отливки. Для этого делают удлиненный короб сечением 15х15 см с несколькими перегородками и каждую ячейку набивают смесью с различными составами. После твердения определяют наиболее подходящую смесь.

А вот еще состав некоторых марок арболита.

Составы других бетонов можно посмотреть

Необработанные опилки можно использовать в качестве грубого корма в рационе мясного скота . Опилки древесины как хвойных, так и лиственных пород, применяемые в виде кормовой добавки в количестве до 25 %, не повреждают пищеварительный тракт телят и не оказывают токсического действия. Хотя они и обеспечивают нормальную функцию рубца, но не являются источником питательных веществ. Полисахариды древесины, особенно хвойных пород, почти не перевариваются в рубце жвачных животных. Наиболее высокая перевариваемость, которая достигает 37 %, наблюдается лишь у древесины осины. У хвойных пород она составляет 5-7 % > у березы 6-8 и у тополя разных видов - от 4 до 25 %

Существуют различные способы обработки древесины, позволяющие улучшить ее перевариваемость. Измельчение древесины, например размалыванием осиновых опилок, несколько улучшает усвояемость питательных веществ. Критический размер частиц такой кормовой муки составляет 2 мм. Более мелкие частицы из-за ускоренного прохождения через рубец не подвергаются должным образом воздействию микрофлоры и перевариваются хуже. Экспериментально доказано, что целлюлоза, полученная путем делигнификации древесины, почти полностью переваривается жвачными животными и ее приравнивают к корму из зерна ячменя. Однако скармливание технической целлюлозы сравнительно дорого и невыгодно. Корма повышенной питательности получают из древесины гидротермическими, термохимическими и микробиологическими методами глубокой переработки. В результате древесина частично подвергается делигнификации и гидролизу. Удаление лигнина способствует доступу фермента к молекуле целлюлозы и лучшей перевариваемости. Гидролиз полисахаридов повышает питательность кормов.

Сырьем для получения кормовых продуктов могут служить опилки, любые измельченные отходы древесины, зеленая и технологическая щепа. Гидротермическая обработка сырья, которое предварительно увлажняют до 70-75 %, осуществляется в автоклавах. Здесь при повышенном давлении (0,6-0,9 МПа) и температуре 158-165 °С происходит реакция гидролиза полисахаридов, в результате чего за 2-3 ч содержание простых Сахаров - легко перевариваемых углеводов - в готовом продукте возрастает до 7- 9 %. Полученный корм представляет собой бурую массу, хорошо пахнущую, мягкую и рассыпчатую. Перевариваемость такого корма из хвойных пород составляет 35%, из лиственных 55%- Хранить его можно в сухом виде как сено или подвергать брикетированию и гранулированию. Для гидротермической обработки могут быть использованы автоклавы периодического и непрерывного действия, применяемые в различных отраслях промышленности, а также технологическое оборудование гидролизной и целлюлозно-бумажной промышленности: гидролизаппараты и аппараты для получения целлюлозы непрерывным способом .

Термохимическую обработку тщательно измельченной древесины осуществляют в тех же аппаратах с применением в качестве химических реагентов минеральных кислот - серной или соляной. Такая обработка оказывается более эффективной, способствует получению продукта с большим выходом легкоусвояемых Сахаров.

Кормовые продукты в виде волокнистой массы можно получить при производстве древесноволокнистых плит. Получив более грубый размол щепы при увеличенном до 1 мм расстоянии между размольными дисками, волокнистую массу разбавляют водой и используют для отлива ковра, минуя проклейный бассейн. После отжима на форпрессах поверхность ковра обильно поливают 15-30%-ным раствором кормового гидролизного сахара. Пропитанный ковер разрезают на куски и сушат в роликовой сушилке. Возможны и другие варианты технологии производства кормовой древесноволокнистой массы, которую скармливают животным в виде смеси с кормами.

Глубокой химической переработкой измельченной древесины в гидролизаппаратах получают кормовой гидролизный сахар. Продукт представляет собой темно-коричневую, вязкую, хорошо текучую сироповидную жидкость с характерным карамельным запахом. Плотность гидролизного сахара при температуре 20 °С составляет 1150-1220 кг/м3, содержание сухого вещества- не менее 30%. Технологический процесс получения кормового сахара включает нейтрализацию гидролизата, осветление и упаривание нейтрали- зата, удаление шлака, очистку и отбор готового продукта. Количество кормового сахара при соблюдении определенных требований сохраняется в течение длительного времени. Хранят и перевозят его в специальных цистернах или бочках. Скармливают гидролизный сахар как заменитель легкопе- ревариваемых углеводов кормовых корнеплодов или как добавку кормовых рационов. На основе продуктов гидролизного производства получен углеводно-протеиновый корм, который представляет собой густую пасту с запахом подгорелого хлеба. Сухое вещество такого корма составляет 40- 50 %, а количество протеина достигает 20 % .

Продуктом биохимической переработки гидролизных Сахаров, полученных из древесины, являются кормовые дрожжи. Они содержат до 52 % хорошо перевариваемого белка и группу витаминов В. Естественное сочетание в дрожжах белков и витаминов делает их исключительно ценным кормовым продуктом для питания животных и птиц. Употребляют дрожжи как белково-витаминную добавку в кормовых рационах. Технология производства кормовых дрожжей включает подготовку гидролизата и выращивания на нем дрожжей в специальном дрожжерастильном чане - инокуляторе. Выросшие в инокуляторе при интенсивной аэрации дрожжи непрерывно отбирают, извлекают из бражки флотацией, подвергают сгущению в сепараторах и упариванию. Высушенные до влажности 8-10 % дрожжи упаковывают в бумажные мешки и отправляют потребителю .

Свое название углеводы получили по ошибке. Произошло это в середине прошлого века. Тогда считали, что молекула любого сахаристого вещества отвечает формуле С m (Н 2 О) n . Все известные тогда углеводы подходили под эту мерку, и формулу глюкозы С 6 Н 12 О 6 писали как С 6 (Н 2 О) 6 .

Но позднее были открыты и такие сахара, которые оказались исключением из правила. Так, явный представитель углеводов рамноза (она тоже дает реакцию Молиша) имеет формулу С 6 Н 12 О 5 . И хотя неточность в названии целого класса соединений была очевидной, термин «углеводы» стал уже настолько привычным, что его не стали менять. Впрочем, в наши дни многие химики предпочитают иное название - «сахара».

Один из сахаров мы попытаемся получить из опилок гидролизом, т. е. разложением водой. Это очень распространенный химический процесс. Опилки и другие древесные отходы содержат углевод клетчатку (целлюлозу). Из нее на гидролизных заводах готовят глюкозу, которую можно использовать затем по-разному; чаще всего ее сбраживают, превращая в спирт, исходный продукт для множества химических синтезов. Большая и самостоятельная отрасль химической индустрии носит название гидролизной промышленности,

Прежде чем воспроизвести процесс гидролиза древесины, попытаемся понять, в чем его суть, а для этого удобнее будет начать не с опилок, а с огурцов и лучинок.

Вымойте свежий огурец, натрите его на терке и выжмите сок. Сок можно отфильтровать, но это не обязательно.

Приготовьте в пробирке гидроксид меди Сu(ОН) 2 . Для этого добавьте 2-3 капли раствора медного купороса к 0,5-1 мл раствора едкого натра. К полученному осадку прибавьте равный объем огуречного сока и встряхните пробирку. Осадок растворится, получится синий раствор. Такая реакция характерна для многоатомных спиртов, т. е. для спиртов, которые содержат несколько гидроксильных групп.

Теперь нагрейте до кипения (или поставьте в кипящую воду) пробирку с полученным синим раствором. Он сначала пожелтеет, затем станет оранжевым, а после охлаждения выпадет красный осадок оксида меди Cu 2 O. Эта реакция характерна для другого класса органических соединений - для альдегидов. Значит, в огуречном соке есть вещество, представляющее собой альдегид и спирт одновременно. Это вещество и есть глюкоза, которая по строению представляет собой альдегидоспирт. Благодаря ей у огурца сладковатый вкус.

Вы, наверное, догадываетесь, что этот опыт совсем не обязательно ставить именно с соком огурца. Он хорошо получается и с другими сладкими соками - виноградным, морковным, яблочным, грушевым, Можно взять для опыта и туалетную огуречную воду, которая продается в парфюмерных магазинах. И, конечно, просто таблетки глюкозы.

Теперь второй предварительный опыт: осахаривание лучинки.

Приготовьте раствор серной кислоты: к одному объему воды прилейте один объем концентрированной серной кислоты (ни в коем случае не лить воду в кислоту!). В пробирку с раствором опустите лучинку и нагрейте раствор до кипения. Лучинка при этом обуглится, но опыту это не помешает.

После нагревания выньте лучинку, опустите ее в другую пробирку с 1-2 мл воды и прокипятите. В обеих пробирках теперь есть глюкоза. Проверить это можно, добавив к растворам две-три капли медного купороса, а затем и едкий натр - появится знакомая синяя окраска. Если же этот раствор прокипятить, выпадет, как мы и ожидали, красный осадок оксида меди Cu 2 O. Итак, глюкоза обнаружена.

То, что наша лучинка осахарилась, и есть результат гидролиза целлюлозы (а на ее долю в древесине приходится около 50%). Как и при гидролизе крахмала, серная кислота в этом процессе не расходуется, она играет роль катализатора.

Наконец, мы подошли к основному опыту, который был обещан в заглавии: получение сахара из опилок.

В фарфоровую чашку насыпьте 2-3 столовые ложки древесных опилок и смочите их водой. Добавьте еще немного воды и равное количество ранее приготовленного раствора серной кислоты (1:1), жидкую кашицу хорошо перемешайте. Закройте крышкой и поставьте в духовку газовой плиты (или в русскую печь) примерно на час, можно немного меньше.

Затем выньте чашку, долейте воды доверху и перемешайте. Отфильтруйте раствор и нейтрализуйте фильтрат, добавляя к нему толченый мел или известковую воду до тех пор, пока не прекратится выделение пузырьков углекислого газа. Об окончании нейтрализации можно также судить, испытывая жидкость лакмусовой бумажкой или же одним из самодельных индикаторов. Не надо капать индикатор прямо в реакционную массу. Следует взять пробу, буквально 2-3 капли, и поместить ее на стеклянную пластинку или в маленькую пробирку.

Содержимое чашки слейте в молочную бутылку, взболтайте жидкость и дайте постоять несколько часов. Сульфат кальция, образовавшийся при нейтрализации кислоты, осядет на дно, а сверху останется раствор глюкозы. Осторожно слейте его в чистую чашку (лучше по стеклянной палочке) и отфильтруйте.

Осталась последняя операция - выпаривание воды на водяной бане. После нее на дне остаются светло-желтые кристаллы глюкозы. Их можно попробовать на вкус, но и только - продукт недостаточно чистый.

Итак, мы выполнили четыре операции: варку опилок с раствором серной кислоты, нейтрализацию кислоты, фильтрование и выпаривание. Именно так и получают глюкозу на гидролизных заводах, только, конечно, не в фарфоровых чашках.

И еще один промышленный процесс мы можем воспроизвести без особых затруднений: превратим один сахар в два других.

При долгом хранении домашнее варенье часто засахаривается. Это происходит потому, что сахар кристаллизуется из сиропа. С вареньем же, которое продается в магазине, такая беда случается гораздо реже. Дело в том, что на консервных заводах, кроме свекловичного или тростникового сахара сахарозы C 12 H 22 O 11 , используют и другие сахаристые вещества, например инвертный сахар. Что такое инверсия сахара и к чему она приводит, вы узнаете из следующего опыта.

Налейте в пробирку или в стакан 10-20 г слабого сахарного раствора и добавьте несколько капель разбавленной соляной кислоты. После этого нагревайте раствор на кипящей водяной бане минут десять-пятнадцать, а затем нейтрализуйте кислоту, лучше всего карбонатом магния MgCO 3 . В аптеках продают так называемую белую магнезию, вещество несколько более сложного состава; она тоже годится. В крайнем случае можно взять и питьевую соду NaHCO 3 , но тогда в растворе останется поваренная соль, которая с сахаром как-то не гармонирует...

Когда прекратится выделение пузырьков диоксида углерода, дайте жидкости отстояться. На всякий случай проверьте индикатором, полностью ли нейтрализовалась кислота. Слейте отстоявшуюся жидкость и попробуйте ее на вкус: она покажется вам менее сладкой, чем исходный раствор (для сравнения оставьте немного первоначального раствора сахара).

В готовом растворе практически не осталось сахарозы, зато появились два новых вещества - глюкоза и фруктоза. Этот процесс и называется инверсией сахара, а полученная смесь - инвертным сахаром.

И вот что любопытно: внешне реакцию ничем не обнаружить. И цвет, и объем, и реакция среды остаются прежними. Не выделяются ни газы, ни осадки. И тем не менее реакция идет, только для ее обнаружения нужны оптические приборы. Сахара - оптически активные вещества: луч поляризованного света, проходя через их раствор, изменяет направление поляризации. Говорят, что сахара вращают плоскость поляризации, причем в ту или иную сторону, и на вполне определенный угол. Так вот, сахароза вращает плоскость поляризации вправо, а глюкоза и фруктоза, продукты ее гидролиза,- влево. Отсюда и слово «инверсия» (по-латыни «переворачивание»).

Но, поскольку оптических приборов в нашем распоряжении нет, попробуем удостовериться химическим путем в том, что взятый сахар и в самом деле претерпел изменения. К исходному и полученному растворам сахаров добавьте несколько капель раствора метиленового синего (можно взять синие чернила для авторучек) и немного слабого раствора любой щелочи. Нагрейте исследуемые растворы на водяной бане. В пробирке с обычным сахаром никаких изменений не произойдет, а вот содержимое пробирки с инвертным сахаром станет почти бесцветным.

Инвертный сахар гораздо меньше, чем обычный, склонен к кристаллизации. Если осторожно выпарить на водяной бане его раствор, то получится густой сироп, внешне немного напоминающий мед. После охлаждения он не кристаллизуется.

Кстати, любимый всеми пчелиный мед на три четверти состоит из тех же углеводов, что и инвертный сахар,- из глюкозы и фруктозы. Искусственный мед также делают на основе инвертного сахара. Конечно, наш сироп от меда отличается, и значительно - главным образом, отсутствием запаха. Но если к нему добавить немного натурального меда, то этот недостаток можно отчасти устранить.

Но почему бы не наготовить дома побольше некристаллизующегося сиропа, чтобы варить на нем варенье? Увы, полная его очистка от посторонних веществ затруднительна, и нет гарантии, что ее удастся довести до конца. Во всяком случае, рисковать не стоит.

О. Ольгин. "Опыты без взрывов"
М., "Химия", 1986



Понравилась статья? Поделиться с друзьями: