Методы разложения рациональных дробей на простейшие. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Сложные интегралы

Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.

Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»:

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл

Пример 3

Найти неопределенный интеграл

Пример 4

Найти неопределенный интеграл

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Методом сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой и начнем решение:

Интегрируем по частям:

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.

Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат :
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?

Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.

В перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к себе:


В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы , что обозначать за , можно было пойти другим путём:

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Продолжаем тему корней

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

Замена тут проста:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей , решается методом выделения полного квадрата . Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого многочлена 2-й степени в степени

(многочлен в знаменателе)

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида ( – натуральное число) выведена рекуррентная формула понижения степени:
, где – интеграл степенью ниже.

Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.

Интегрирование сложных тригонометрических функций

Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.

На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!

Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.

Пара простых примеров для самостоятельного решения:

Пример 18

Найти неопределенный интеграл

Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

Ну, это совсем простой пример.

Полные решения и ответы в конце урока.

Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .

Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.

Существует и формальная предпосылка для применения вышеуказанной замены:

Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:

для интеграла – целое отрицательное ЧЁТНОЕ число.

! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).

Рассмотрим пару более содержательных заданий на это правило:

Пример 20

Найти неопределенный интеграл

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Пример 21

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Держитесь, начинаются чемпионские раунды =)

Зачастую в подынтегральной функции находится «солянка»:

Пример 22

Найти неопределенный интеграл

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

Пример 24

Найти неопределенный интеграл

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока

Пусть у нас имеется правильная рациональная дробь многочленов от переменной x :
,
где Р m (x) и Q n (x) - многочлены степеней m и n , соответственно, m < n . Мы считаем, что нам известно разложение многочлена Q n (x) на множители:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
См. подробнее: Методы разложения многочленов на множители >>>
Примеры разложения многочленов на множители >>>

Общий вид разложения рациональной дроби на простейшие

Общий вид разложения рациональной дроби на простейшие следующий:
.
Здесь A i , B i , E i , ... - действительные числа (неопределенные коэффициенты), которые нужно определить.

Например,
.

Еще один пример:
.

Методы разложения рациональной дроби на простейшие

Сначала мы записываем разложение с неопределенными коэффициентами в общем виде. . Затем освобождаемся от знаменателей дробей, умножая уравнение на знаменатель исходной дроби Q n . В результате получаем уравнение, содержащее и слева и справа многочлены от переменной x . Это уравнение должно выполняться для всех значений x . Далее существует три основных метода определения неопределенных коэффициентов.

1) Можно присвоить переменной x определенные значения. Задавая несколько таких значений, мы получим систему уравнений, из которой можно определить неизвестные коэффициенты A i , B i , ... .
2) Поскольку полученное уравнение и с лева и справа содержит многочлены, то можно приравнять коэффициенты при одинаковых степенях переменной x . Из полученной системы можно определить неопределенные коэффициенты.
3) Можно продифференцировать уравнение и присвоить переменной x определенные значения.

На практике, удобно комбинировать эти методы. Разберем их применение на конкретных примерах.

Пример

Разложить правильную рациональную дробь на простейшие.

Решение

1. Устанавливаем общий вид разложения.
(1.1) ,
где A, B, C, D, E - коэффициенты, которые нужно определить.

2. Избавимся от знаменателей дробей. Для этого умножим уравнение на знаменатель исходной дроби (x-1) 3 (x-2)(x-3) . В результате получаем уравнение:
(1.2)
.

3. Подставим в (1.2) x = 1 . Тогда x - 1 = 0 . Остается
.
Отсюда .
Подставим в (1.2) x = 2 . Тогда x - 2 = 0 . Остается
.
Отсюда .
Подставим x = 3 . Тогда x - 3 = 0 . Остается
.
Отсюда .

4. Осталось определить два коэффициента: B и C . Это можно сделать тремя способами.
1) Подставить в формулу (1.2) два определенных значения переменной x . В результате получим систему из двух уравнений, из которой можно определить коэффициенты B и C .
2) Открыть скобки и приравнять коэффициенты при одинаковых степенях x .
3) Продифференцировать уравнение (1.2) и присвоить переменной x определенное значение.

В нашем случае, удобно применить третий способ. Возьмем производную от левой и правой частей уравнения (1.2) и подставим x = 1 . При этом замечаем, что члены, содержащие множители (x-1) 2 и (x-1) 3 дают нуль, поскольку, например,
, при x = 1 .
В произведениях вида (x-1) g(x) , дифференцировать нужно только первый множитель, поскольку
.
При x = 1 второй член обращается в нуль.

Дифференцируем (1.2) по x и подставляем x = 1 :
;
;
;
3 = -3 A + 2 B ; 2 B = 3 + 3 A = 6 ; B = 3 .

Итак, мы нашли B = 3 . Остается найти коэффициент C . Поскольку при первом дифференцировании мы отбросили некоторые члены, то дифференцировать второй раз уже нельзя. Поэтому применим второй способ. Поскольку нам нужно получить одно уравнение, то нам не нужно находить все члены разложения уравнения (1.2) по степеням x . Мы выбираем самый легкий член разложения - x 4 .

Выпишем еще раз уравнение (1.2) :
(1.2)
.
Раскрываем скобки и оставляем только члены вида x 4 .
.
Отсюда 0 = C + D + E , C = - D - E = 6 - 3/2 = 9/2 .

Сделаем проверку. Для этого определим C первым способом. Подставим в (1.2) x = 0 :
0 = 6 A - 6 B+ 6 C + 3 D + 2 E ;
;
. Все правильно.

Ответ

Определение коэффициента при старшей степени 1/(x-a)

В предыдущем примере мы сразу определили коэффициенты у дробей , , , присваивая, в уравнении (1.2) , переменной x значения x = 1 , x = 2 и x = 3 . В более общем случае, всегда можно сразу определить коэффициент при старшей степени дроби вида .

То есть если исходная дробь имеет вид:
,
то коэффициент при равен . Таким образом, разложение по степеням начинается с члена .

Поэтому в предыдущем примере мы сразу могли искать разложение в виде:


.

В некоторых простых случаях, можно сразу определить коэффициенты разложения. Например,


.

Пример с комплексными корнями знаменателя

Теперь разберем пример, в котором знаменатель имеет комплексные корни.

Пусть требуется разложить дробь на простейшие:
.

Решение

1. Устанавливаем общий вид разложения:
.
Здесь A, B, C, D, E - неопределенные коэффициенты (действительные числа), которые нужно определить.

2. Освобождаемся от знаменателей дробей. Для этого умножаем уравнение на знаменатель исходной дроби :
(2.1) .

3. Заметим, что уравнение x 2 + 1 = 0 имеет комплексный корень x = i , где i - комплексная единица, i 2 = -1 . Подставим в (2.1) , x = i . Тогда члены, содержащие множитель x 2 + 1 дают 0 . В результате получаем:
;
.
Сравнивая левую и правую части, получаем систему уравнений:
-A + B = -1 , A + B = -1 .
Складываем уравнения:
2 B = -2 , B = -1 , A = -B -1 = 1 - 1 = 0 .
Итак, мы нашли два коэффициента: А = 0 , B = -1 .

4. Заметим, что x + 1 = 0 при x = -1 . Подставим в (2.1) , x = -1 :
;
2 = 4 E , E = 1/2 .

5. Далее удобно подставить в (2.1) два значения переменной x и получить два уравнения, из которых можно определить C и D . Подставим в (2.1) x = 0 :
0 = B + D + E , D = -B - E = 1 - 1/2 = 1/2 .

6. Подставим в (2.1) x = 1 :
0 = 2(A + B) + 4(C + D) + 4 E ;
2(C + D) = -A - B - 2 E = 0 ;
C = -D = -1/2 .

Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды . Нам потребуется таблица разложений функций в степенные ряды , которую можно раздобыть на странице Математические формулы и таблицы . Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.

Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.

Теперь второй этап решения:
Сначала меняем подынтегральную функцию на полученный степенной ряд:

Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .

На следующем шаге максимально упрощаем каждое слагаемое:

Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.

Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:

Сколько членов ряда нужно взять для окончательных вычислений? Если сходящийся ряд знакочередуется , то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001 , и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!) . Таким образом, для окончательного расчёта достаточно первых двух членов: .

Ответ : , с точностью до 0,001

Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).

Пример 2

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд по степеням , с точностью до 0,001

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то незаслуженно я обошел стороной арктангенс, ни разу не разложив его в ряд. Исправим оплошность.

Пример 3

Вычислить определенный интеграл с точностью 0,01 с помощью разложения подынтегральной функции в ряд.

Решение : Есть сильное подозрение, что данный интеграл является берущимся, правда, решение не самое простое.

Разложим подынтегральную функцию в ряд Маклорена. Используем разложение:

В данном случае


Здесь повезло, что в итоге степени таки остались целыми, дробные степени было бы труднее интегрировать.

Таким образом:

Бывает и так. Члены с возу – студенту легче.

Ответ : с точностью до 0,01.

И снова обратите внимание, что точность 0,01 здесь гарантирована лишь потому, что сходящийся ряд знакочередуется . Для ряда с положительными членами, например, ряда такую оценку проводить нельзя, поскольку сумма отброшенного «хвоста» может запросто превысить 0,00089. Что делать в таких случаях? Расскажу в конце урока. А пока открою секрет, что во всех сегодняшних примерах ряды знакочередуются.

И, конечно, следует контролировать область сходимости ряда . В рассмотренном примере она, кстати, «урезана»: (из-за квадратного корня) , однако наш отрезок интегрирования полностью лежит в данной области.

Что будет, если попытаться решить какой-нибудь нелегальный случай вроде ? Функция так же прекрасно разложится в ряд, члены ряда так же замечательно проинтегрируются. Но, когда мы начнем подставлять значение верхнего предела по формуле Ньютона-Лейбница , то увидим, что числа будут неограниченно расти , то есть каждое следующее число будет больше, чем предыдущее. Ряд-то сходится лишь на отрезке . Это не паранойя, на практике так время от времени бывает. Причина – опечатка в сборнике задач или методичке, когда авторы недосмотрели, что промежуток интегрирования «вылезает» за область сходимости ряда.

Интеграл с арксинусом я рассматривать не буду, поскольку он занесен в красную книгу. Лучше дополнительно рассмотреть что-нибудь «бюджетное»:

Пример 4

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Это пример для самостоятельного решения. Что касаемо нуля, то он здесь не помеха – подынтегральная функция терпит лишь устранимый разрыв в точке , и поэтому несобственный интеграл здесь и рядом не валялся, т.е. речь идёт по-прежнему об определённом интеграле . В ходе решения вы увидите, что полученный ряд прекрасно сходится к нулю.

В заключение рассмотрим еще пару примеров, которые несколько сложнее.

Пример 5

Вычислить определенный интеграл с точностью 0,001 с помощью разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Решение : Анализирую подынтегральную функцию, приходим к выводу, что нужно использовать биномиальное разложение. Но сначала функцию надо представить в соответствующем виде:

К сожалению, ни один частный случай биномиального разложения не подходит, и нам придется использовать громоздкую общую формулу:

В данном случае: ,

Разложение уже на этом этапе лучше максимально упростить. Замечаем также, что четвертый член ряда нам, очевидно, не потребуется, так как в нём еще до интегрирования появилась дробь , которая заведомо меньше требуемой точности 0,001.

На данном уроке мы научимся находить интегралы от некоторых видов дробей. Для успешного усвоения материала Вам должны быть хорошо понятны выкладки статей и .

Как уже отмечалось, в интегральном исчислении нет удобной формулы для интегрирования дроби:

И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых сейчас и расскажем.

Метод разложения числителя

Пример 1

Найти неопределенный интеграл

Выполнить проверку.

На уроке Неопределенный интеграл. Примеры решений мы избавлялись от произведения функций в подынтегральном выражении, превращая её в сумму, удобную для интегрирования. Оказывается, что иногда в сумму (разность) можно превратить и дробь!

Анализируя подынтегральную функцию, мы замечаем, что и в числителе и в знаменателе у нас находятся многочлены первой степени: x и (x +3). Когда в числителе и знаменателе находятся многочлены одинаковой степени, то помогает следующий искусственный приём: в числителе мы должны самостоятельно организовать такое же выражение, что и в знаменателе:

.

Рассуждение может быть следующим: «В числителе надо организовать(x + 3), чтобы привести интеграл к табличным, но если я прибавлю к «иксу» тройку, то, для того, чтобы выражение не изменилось – я обязан вычесть такую же тройку».

Теперь можно почленно разделить числитель на знаменатель:

В результате мы добились того, чего и хотели. Используем первые два правила интегрирования:

Готово. Проверку при желании выполните самостоятельно. Обратите внимание, что

во втором интеграле – это «простая» сложная функция. Особенности ее интегрирования обсуждались на уроке Метод замены переменной в неопределенном интеграле .

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.



Пример 2

Найти неопределенный интеграл

Выполнить проверку

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто .

В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя больше старшей степени знаменателя .

Пример 3

Найти неопределенный интеграл

Выполнить проверку.

Начинаем подбирать числитель. Алгоритм подбора числителя примерно такой:

1) В числителе нам нужно организовать 2x -1, но там x 2 . Что делать? Заключаю 2x -1 в скобки и умножаю на x , как: x (2x -1).

2) Теперь пробуем раскрыть эти скобки, что получится? Получится: (2x 2 -x ). Уже лучше, но никакой двойки при x 2 изначально в числителе нет. Что делать? Нужно домножить на (1/2), получим:

3) Снова раскрываем скобки, получаем:

Получился нужный x 2 ! Но проблема в том, что появилось лишнее слагаемое (-1/2)x . Что делать? Чтобы выражение не изменилось, мы обязаны прибавить к своей конструкции это же (1/2)x :

. Жить стало легче. А нельзя ли еще раз в числителе организовать (2x -1)?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:

. Простите, но у нас было на предыдущем шаге (+1/2)x , а не(+x) . Что делать? Нужно домножить второе слагаемое на (+1/2):

.

5) Снова для проверки раскрываем скобки во втором слагаемом:

. Вот теперь нормально: получено (+1/2)x из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое (-1/4), значит, мы обязаны прибавить к своему выражению (1/4):

.

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:

Получился.

Таким образом:

Готово. В последнем слагаемом мы применили метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция

Рассмотренный метод разложения x 2 в сумму есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно.

Помимо алгоритма подбора можно использовать деление столбиком многочлена на многочлен, но, боюсь, объяснения займут еще больше места, поэтому - как-нибудь в другой раз.

Пример 4

Найти неопределенный интеграл

Выполнить проверку.

Это пример для самостоятельного решения.



Понравилась статья? Поделиться с друзьями: