Чем является комплекс гольджи в растительных клетках. ЭПС и комплекс Гольджи

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов.

Функции гранулярной эндоплазматической сети:

  • · синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • · отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • · конденсация и модификация синтезированного белка;
  • · транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • · синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • · участие в синтезе гликогена;
  • · синтез липидов;
  • · дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы клетки (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи -- это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану.

Функции аппарата Гольджи:

  • · сортировку, накопление и выведение секреторных продуктов;
  • · накопление молекул липидов и образование липопротеидов;
  • · образование лизосом;
  • · синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений;
  • · формирование клеточной пластинки после деления ядра в растительных клетках;
  • · формирование сократимых вакуолей простейших.

Клетка — цельная система

Живая клетка — уникальная совершенная мельчайшая единица организма, она устроена так, чтобы максимально эффективно использовать кислород и питательные вещества, выполняя свои функции. Жизненно важными для клетки органеллами являются ядро, рибосомы, митохондрии, эндоплазматический ретикулум, аппарат Гольджи. Вот о последнем и поговорим подробнее.

Что это такое

Эта мембранная органелла является комплексом структур, которые выводят из клетки синтезированные в ней вещества. Чаще всего она располагается вблизи от наружной клеточной мембраны.

Аппарат Гольджи: строение

Он состоит из образованных мембранами “мешочков”, называемых цистернами. Последние имеют вытянутую форму, слегка сплющены посередине и расширены по краям. Также в комплексе имеются круглые пузырьки Гольджи - мелкие мембранные структуры. Цистерны “сложены” стопочками, которые называются диктиосомы. Аппарат Гольджи содержит различные типы “мешочков”, весь комплекс делят на некоторые части по степени удаленности от ядра. Различают их три: цис-отдел (ближе к ядру), срединный, и транс-отдел - самый дальний от ядра. Они характеризуются отличающимся составом ферментов, а следовательно, и выполняемой работой. В строении диктиосом есть одна особенность: они полярны, то есть ближайший к ядру отдел только принимает пузырьки, идущие от эндоплазматического ретикулума. Часть “стопки”, обращенная к мембране клетки, только формирует и отдает их.

Аппарат Гольджи: функции

Основными выполняемыми задачами являются сортировка белков, липидов, слизистых секретов и их выведение. Также через него проходят выделяемые клеткой небелковые вещества, углеводные компоненты наружной мембраны. При этом аппарат Гольджи вовсе не является индифферентным посредником, который просто “передает” вещества, в нем идут процессы активизации и модификации (“созревания”):

  1. Сортировка веществ, транспорт белков. Распределение белковых веществ происходит на три потока: для мембраны самой клетки, экспортные, лизосомальные ферменты. В первый поток помимо белков включаются и жиры. Интересный факт, что любые экспортные вещества переносятся внутри пузырьков. А вот предназначенные для мембраны клетки белки встраиваются в мембрану транспортного пузырька и перемещаются таким образом.
  2. Выделение всех продуктов, произведенных в клетке. Аппарат Гольджи “упаковывает” всю продукцию, как белковую, так и иной природы, в секреторные пузырьки. Все вещества выделяются наружу путем сложного взаимодействия последних с клеточной мембраной.
  3. Синтез полисахаридов (гликозаминогликанов и компонентов гликокаликса клеточной стенки).
  4. Сульфатирование, гликозилирование жиров и белков, частичный протеолиз последних (необходимый для перевода их из неактивной формы в активную), — это всё процессы “созревания” белков, нужные для их будущей полноценной работы.

В заключение

Рассмотрев то, как устроен и работает комплекс Гольджи, убеждаемся, что он является важнейшей и неотъемлемой частью любой клетки (особенно секреторных). Клетка, не продуцирующая веществ на экспорт, также не может обойтись без этой органеллы, поскольку от нее зависит “укомплектованность” клеточной мембраны и другие важные внутренние процессы жизнедеятельности.

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа.

АГ представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен.

Аппарат Гольджи обычно расположен около клеточного ядра, вблизи ЭПС (в животных клетках часто вблизи клеточного центра).

Комплекс Гольджи

Слева – в клетке, среди других органоидов.

Справа – комплекс Гольджи с отделяющимися от него мембранными пузырьками

Все вещества, синтезированные на мембранах ЭПС переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи. Поступившие органические вещества из ЭПС претерпевают дальнейшие биохимические превращения, накапливаются, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Функции аппарата Гольджи:

1 Участие в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

2) Секреторная - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза.

3) Обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

4) Место образования лизосом.

5) Транспорт веществ



Лизосомы

Лизосома была открыта в 1949 г. К. де Дювом (Нобелевская премия за 1974 г.).

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов - гидролаз. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов (протеиназ, нуклеаз, глюкозидаз, фосфатаз, липаз и др.), расщепляющих различные биополимеры. Расщепление веществ с помощью ферментов называют лизисом (лизис-распад).

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. (Лизосомы иногда называют «желудками» клетки)

Лизосома – мембранный пузырек, содержащий гидролитические ферменты

Функции лизосом:

1. Расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2. Разрушают старые, поврежденные, избыточные органоиды. Разрушение органоидов может происходить и во время голодания клетки.

3. Осуществляют автолиз (саморазрушение) клетки (разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки. Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку

Эндоплазматическая сеть, аппарат Гольджи и лизосомы образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функции мембран.

Митохондрии

Строение митохондрии:
1 - наружная мембрана;
2 - внутренняя мембрана; 3 - матрикс; 4 - криста; 5 - мультиферментная система; 6 - кольцевая ДНК.

По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр - от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами . Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны. Число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, участвующие в синтезе аденозинтрифосфата (АТФ). Здесь энергия химических связей превращается в богатые энергией (макроэргические) связи АТФ . Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза .Внутренняя среда данных органелл называется матриксом . Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно (митохондрии содержат собственную цепочку ДНК, в которой сосредоточено до 2% ДНК самой клетки).

Функции митохондрий:

1. Преобразование энергии химических связей в макроэргические связи АТФ (митохондрии - "энергетические станции" клетки).

2. Участвуют в процессах клеточного дыхания - кислородное расщепление органических веществ.

Рибосомы

Строение рибосомы:
1 - большая субъединица; 2 - малая субъединица.

Рибосомы - немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух фрагментов - большой и малой субъединиц. Химический состав рибосом - белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК.

Образуются субъединицы рибосом в ядрышке. Пройдя через поры в ядерной оболочке рибосомы попадают на мембраны эндоплазматической сети (ЭПС).

Функция рибосом: сборка полипептидной цепочки (синтез белковых молекул из аминокислот).

Цитоскелет

Клеточный цитоскелет образуется микротрубочками и микрофиламентами .

Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина.

Микротрубочки располагаются в гиалоплазме и выполняют следующие функции :

· создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;

· принимают участие в процессе распределения хромосом клетки(образуют веретено деления);

· обеспечивают перемещение органелл;

Микрофиламенты - нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр

Клеточный центр - органоид, состоящий из 2 мелких гранул- центриолей и лучистой сферы вокруг них - центросферы. Центриоль - это цилиндрическое тельце длиной 0,3-0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. Центриоли располагаются парами под прямым углом друг к другу. Активная роль клеточного центра обнаруживается при делении клетки. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей.

Функции:

1. Обеспечение равномерного расхождения хромосом к полюсам клетки во время митоза или мейоза.

2. Центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками . При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

У животных и человека реснички они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Функции:

Специфические

Ядро. Хромосомы

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры, через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек . В состав ядерного сока входят различные белки (в том числе ферменты ядра ), свободные нуклеотиды .

Ядрышко представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают . Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина : 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП) . В зависимости от функционального состояния хроматина различают: гетерохроматин и эухроматин .

Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра:

1. Хранение наследственной информации и передача ее дочерним клеткам в процессе деления.

2. Управление процессом биосинтеза белка.

3. Регуляция деления клетки и процессов развития организма.

4. Место образования субъединиц рибосом.

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию.

В настоящее время принята нуклеосомная модель организации хроматина эукариот.

В процессе преобразования хроматина в хромосомы формируются спирали, суперспирали, петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические .

Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид. Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б)субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки -гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Функции хромосом: 1) хранение наследственной информации,

2) передача генетического материала от материнской клетки к дочерним.

В 1898 году итальянский учёный Камилло Гольджи обнаружил важную органеллу клетки, которая впоследствии была названа его именем. Строение и функции комплекса Гольджи важны для нормальной жизнедеятельности самой клетки и всего организма.

Строение

Аппарат Гольджи - система мембран, напоминающих вогнутые стопки. Каждая стопка - своеобразная цистерна, мешочек, полость, образованная слиянием двух мембран. Это структурная единица органоида, которая называется диктиосомой. В одной органелле число диктиосом может варьировать от четырёх до семи.

Рис. 1. Сроение комплекса Гольджи.

Цистерны взаимодействуют между собой посредством системы трубочек и пузырьков. По структуре и функциональному назначению аппарат Гольджи делится на три отдела. В каждом отделе находятся определённые ферменты, которые участвуют в модификации, попавших в органеллу веществ. Процесс начинается с цис-отдела. Краткое описание каждого отдела представлено в таблице “Строение и функции комплекса Гольджи в клетке”.

В животной клетке комплекс Гольджи расположен ближе к ядру и часто соприкасается с шероховатой эндоплазматической сетью (ЭПС). В растительных клетках цистерны рассеяны по цитоплазме.

Значение

Органоид выполняет три важных функции:

  • перенос и преобразование белков;
  • формирование и модификация полисахаридов и липидов;
  • производство лизосом.

Работа комплекса Гольджи не до конца понятна биологам. Главная функция органеллы - синтез секретов, которые в дальнейшем транспортируются наружу. Большинство секретов имеют белковое происхождение, поэтому комплекс Гольджи перерабатывает первичные, незрелые белки, отделившиеся от ЭПС, в готовые секреты. Механизм этого преображения и особенности процесс транспортировки белков через все отделы до конца не ясны.

ТОП-4 статьи которые читают вместе с этой

Аппарат Гольджи производит гликолипиды - сложные соединения, образованные углеводами и жирами. Основу веществ составляют полисахариды, к которым прикрепляются остатки жирных кислот. Гликолипиды входят в состав нервных тканей и клеточных мембран.

Рис. 2. Гликолипиды.

Третья важная функция - производство лизосом. Они также «изготовляются» из белков ЭПС. Аппарат Гольджи формирует первичные лизосомы - органеллы, напоминающие пузырёк или везикулу. Снаружи лизосома ограничена тонкой мембраной, внутри находятся ферменты, расщепляющие органические вещества, которые поступают снаружи или производятся клеткой (продукты жизнедеятельности). Отделившиеся от комплекса Гольджи первичные лизосомы сливаются в цитоплазме с твёрдыми или жидкими веществами, превращаясь во вторичные лизосомы, которые выполняют функцию переваривания.

Рис. 3. Процесс образования лизосом.

Комплекс Гольджи наиболее развит в клетках, выделяющих различные секреты.

Что мы узнали?

Аппарат Гольджи - важная органелла растительных и животных клеток. Она состоит из мембран, образующих полости и сложенных стопкой. Через полости комплекса Гольджи проходят белки, жиры, липиды, из которых образуются сложные соединения, участвующие в жизнедеятельности клетки и организма в целом. Аппарат Гольджи производит «строительный» материал из углеводов и липидов, секреты, ферменты, лизосомы.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 83.

Строение комплекса Гольджи

Комплекс Гольджи (КГ), или внутренний сетчатый аппарат , - это особенная часть метаболической системы цитоплазмы, участвующая в процессе выделения и формирования мембранных структур клетки.

КГ видно в оптический микроскоп как сетку или изогнутые палочкообразные тельца, лежащие вокруг ядра.

Под электронным микроскопом выявлено, что эта органелла представлена тремя видами образований:

Все компоненты аппарата Гольджи образованы гладкими мембранами.

Замечание 1

Изредка АГ имеет зернисто – сетчатую структуру и расположен около ядра в виде колпачка.

АГ встречается во всех клетках растений и животных.

Замечание 2

Аппарат Гольджи значительно развит в секреторных клетках. Особенно хорошо он виден в нервных клетках.

Внутреннее межмембранное пространство заполнено матриксом, который содержит специфические ферменты.

Аппарат Гольджи имеет две зоны:

  • зону формирования , куда с помощью везикул поступает материал, который синтезируется в эндоплазматической сети;
  • зону созревания , где формируется секрет и секреторные мешочки. Этот секрет накопляется на терминальных участках АГ, откуда отпочковываются секреторные везикулы. Как правило, такие везикулы переносят секрет за пределы клетки.
  • Локализация КГ

В аполярных клетках (например, в нервных) КГ расположен вокруг ядра, в секреторных он занимает место между ядром и апикальным полюсом.

Комплекс мешочков Гольджи имеет две поверхности:

формировательную (незрелую или регенераторную) цис-поверхность (от лат. Сis – с этой стороны); функциональную (зрелую) – транс-поверхность (от лат. Trans – через, за).

Столбик Гольджи своей выпуклой формировательной поверхностью обращён в сторону ядра, прилегает к гранулярной эндоплазматической сети и содержит мелкие круглые пузырьки, названные промежуточными . Зрелая вогнутая поверхность столбика мешочков обращена к вершине (апикальному полюсу) клетки и оканчивается большими пузырьками.

Образование комплекса Гольджи

Мембраны КГ синтезируются гранулярной эндоплазматической сетью, которая прилегает к комплексу. Соседние с ним участки ЭПС теряют рибосомы, от них отпочковываются мелкие, так называемые, транспортные, или промежуточные везикулы . Они перемещаются к формировательной поверхности столбика Гольджи и сливаются с первым её мешочком. На противоположной (зрелой) поверхности комплекса Гольджи находится мешочек неправильной формы. Его расширение – просекреторные гранулы (конденсирующие вакуоли) – непрерывно отпочковываюся и превращаются в пузырьки, заполненные секретом – секреторные гранулы. Таким образом, в меру использования мембран зрелой поверхности комплекса на секреторные везикулы, мешочки формировательной поверхности пополняются за счёт эндоплазматической сетки.

Функции комплекса Гольджи

Основная функция аппарата Гольджи – выведение синтезированных клеткой веществ. Эти вещества транспортируются по клетках эндоплазматической сети и накопляются в пузырьках сетчатого аппарата. Потом они или выводятся во внешнюю среду или же клетка использует их в процессе жизнедеятельности.

В комплексе так же концентрируются некоторые вещества (например, красители), которые поступают в клетку извне и должны быть выведены из неё.

В растительных клетках комплекс содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения целлюлозной оболочки клетки.

Кроме того, КГ синтезирует те химические вещества, которые образуют клеточную мембрану.

В общем, аппарат Гольджи выполняет такие функции:

  1. накопление и модификация макромолекул, которые синтезировались в эндоплазматической сети;
  2. образование сложных секретов и секреторных везикул путём конденсации секреторного продукта;
  3. синтез и модификация углеводов и гликопротеидов (образование гликокаликса, слизи);
  4. модификация белков – добавление к полипептиду различных химических образований (фосфатных – фосфориллирование, карбоксильных – карбоксилирование), формирование сложных белков (липопротеидов, гликопротеидов, мукопротеидов) и расщепление полипептидов;
  5. имеет важное значение для формирования, обновления цитоплазматической мембраны и других мембранных образований благодаря образованию мембранных везикул, которые в дальнейшем сливаются с клеточной мембраной;
  6. образование лизосом и специфической зернистости в лейкоцитах;
  7. образование пероксисом.

Белковое и, частично, углеводное содержимое КГ поступает с гранулярной эндоплазматической сетки, где оно синтезируется. Основная часть углеводного компонента образуется в мешочках комплекса с участием ферментов гликозилтрансфераз, которые находятся в мембранах мешочков.

В комплексе Гольджи окончательно формируются клеточные секреты, содержащие гликопротеиды и гликозаминогликаны. В КГ созревают секреторные гранулы, которые переходят в пузырьки, и перемещение этих пузырьков в направлении плазмалеммы Окончательный этап секреции – это выталкивание сформированных (зрелых) везикул за пределы клетки. Выведение секреторных включений из клетки осуществляется путём вмонтирования мембран пузырька в плазмалемму и выделение секреторных продуктов за пределы клетки. В процессе перемещения секреторных пузырьков к апикальному полюсу клетки мембраны их утолщаются из начальных 5-7 нм, достигая толщины плазмалеммы 7-10 нм.

Замечание 4

Существует взаимозависимость между активностью клетки и размерами комплекса Гольджи – секреторные клетки имеют большие столбики КГ, тогда как несекреторные содержат небольшое количество мешочков комплекса.



Понравилась статья? Поделиться с друзьями: